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Multi-order Structured Network Embedding
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Abstract—Multi-order proximity is useful for effective network embedding. In contrast to many previous works that only consider
order-level weights, this paper proposes to explore a more expressive node-level weighting mechanism to encode the diverse local
structure, with a scalable and theoretically justified sampling strategy for its learning. Specifically, we start with a formal definition of
multi-order proximity matrix which leads to our new multi-order objective based on Laplacian Eigenmaps and Skip-Gram. Then we
instantiate the node-specific multi-order weights in the objective with the help of neighborhood size estimation, which indicates
node-specific multi-order information. For objective learning, it is implicitly fulfilled with our proposed branching tree-like random walk
strategy termed by BTWalk, which differs from the dominant chain-like walk in existing sampling techniques. BTWalk is designed by a
synergetic combination of BFS (breadth-first search) and DFS (depth-first search), which is modulated according to the weights of the
considered proximity orders. We theoretically analyze its cost-efficiency, and further propose the so-called Vec4Cross framework that
incorporates joint node embedding and network alignment for two partially overlapped networks based on the seed matchings, whereby
BTWalk is also adopted for embedding. Promising experimental results are obtained on real-world datasets across popular tasks.

Index Terms—Network Embedding, Representation Learning, Network Alignment, Branching Tree Random Walk
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1 INTRODUCTION

COMPARED with vector-like data as readily handled by
a wide spectrum of existing learning methods, data

in the form of networks is in general more challenging.
One way to reuse the rich classic learning methods is to
embed the nodes into vectorized features [1], [2]. Various
embedding models have been proposed in recent years,
and most focus on learning embedding on single net-
works. More recently, there is also an increasing demand
for cross-network embedding, with emerging applications
like knowledge graph alignment, network alignment (with
joint link prediction) [3], [4], etc.

Among successful network embedding methods, exist-
ing efforts (see Table 1) have spanned two directions includ-
ing the expressive objective design and effective learning
procedure, mostly based on the random walk technique.

i) Expressive objective design: Pairwise node proximity
is one of the principles for node representation learning ob-
jective design [2], [5], [6], [7], [8], [9], [10], [11]. In general, the
proximity between nodes can be divided as 1st-order, 2nd-
order, and higher-order proximity [9]. Some works [6], [7],
[10] propose to model multi-order proximity. They simply
give different weights to different orders for all the nodes,
making the problem tractable through some mathematical
tricks. However, such a simplification neglects the person-
alized multi-order features for the nodes, which may limit
models’ ability of expressiveness on local structures.

ii) Effective sampling and learning: Efforts have been
made on learning the objective of multi-order proximity [7].
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TABLE 1: Two lines of research for network embedding. This
paper contributes to both parts, via multi-order proximity
objective design and branching tree random walk.

Improvement Related works
Single-order Multi-order Others

Objective design [2], [8], [9] [6], [7], [10] [11]
Random-walk design [9] [12], [13], [14] [15], [16]

Among them, scalable methods are often limited to specific
forms [6], [7], while some more effective sampling tech-
niques suffer from scalability issues due to the adopted
complex random walk strategies [13], [16]. It is much needed
for performing sampling and learning efficiently and ef-
fectively, especially towards a more general multi-order
proximity preserving problem.

Although many efforts have been paid in the above
two aspects, it still remains open for a principled way of
addressing them both, which is the focus of this paper.
Specifically, we devise a new objective to encode the multi-
order proximity information effectively, and meanwhile de-
velop new sampling and learning procedure to solve the
objective. We resort to an approach based on light-weighted
random walk and shallow embedding frameworks [2], [17]
in contrast to the recent embedding models based on deep
neural network e.g. SDNE [8] and its hyper version [18] that
are hardly scalable for real-world datasets. More notably,
our proposed BTWalk (namely Branching Tree Random
Walk) possesses theoretically guaranteed cost-efficiency for
learning rich structure information. We highlight the main
merits of our approach as follows.

1) Expressive objective design for multi-order prox-
imity. In contrast to matrix factorization based embedding
methods [6], [7], [10] and deep learning based methods [8],
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Fig. 1: Top row: the multi-order proximity weight m(k)
i over varying k where k is the proximity order i.e. k-hop

neighborhood. Bottom row: the instantiated sampling sequences by DeepWalk. Note the proposed branching tree random
walk method, i.e. BTWalk generates tree-like sampling with node-specific weights over different proximity orders. It can
adaptively preserve the weights in different multi-order proximity settings, e.g. (a) left-skewed; (b) right-skewed; (c) long-
tailed; (d) uniform, etc. This is fulfilled by repeating BFS sampling for different times upon the nodes on a single DFS
path. In contrast, uniform random walk i.e. DeepWalk [12] samples one node per hop, unable to achieve the node-specific
weights of multiple proximity orders. See Sec. 3.4.2 for more detailed comparison and discussion.

[18], an explicit objective is often missing in random walk
methods [12], [13], [16], leading to a somehow ad-hoc learn-
ing procedure. Though this has been recently addressed
in [9], [19] with new objectives, they are either limited
to low-order proximity preserving [9], or neglecting node-
specific nature of multi-order features [19]. In contrast, we
aim to design a novel objective with node-specific multi-
order weights on proximity matrix. The objective is further
specified by a combination of Laplacian Eigenmaps (LE) [2]
and Skip-Gram [17]. Both of them are shallow models with
impressive performance and scalability.

2) Scalable multi-order proximity learning. One funda-
mental challenge in modeling multi-order proximity in ex-
isting embedding methods like [10] is the resultingO(|V|dk)
time complexity of computing the multi-order proximity
matrix in the pre-processing stage (V stands for the node set
of the given network, and d stands for the average degree of
nodes). Some embedding methods based on matrix factor-
ization like [7] can avoid multiplication between transition
matrix and adjacency matrix by mathematical tricks, while
sacrificing the flexibility for personalized weighting.

To avoid computing the actual multi-order proximity
matrix in the pre-processing stage, we propose Branching
Tree Random Walk (namely BTWalk) as a sampling strategy.
Notably, BTWalk gives a solution of sampling for multi-
order weights not only in order-level, but also in node-
level. Specifically, BTWalk is a neighbor sampling algorithm
to search neighbors by both BFS and DFS with a time
complexity of O(NwK) (Nw is the number of walks and K
is the max hop). As Fig. 1 shows, BTWalk superimposes BFS
on DFS in a synergetic manner. In our method, the sampling
number of k-hop BFS is set proportional to the weight of
k-th order proximity, and the total sampling depth is set
to the max hop K. In this way, personalized multi-order
proximity can be preserved. In Fig. 1, we give examples
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Fig. 2: The varying size (i.e. number of nodes) of k-hop
neighborhoods of the five sampled node sequences from
YouTube [20]. In the green and purple walking sequences,
the neighborhood sizes keep stable, while the other three
sequences grow explosively at 2-, 3-, and 4-hop respectively.
Hence it calls for adaptive sampling by the number of nodes
for different hops as their neighborhood sizes vary much.

of the personalized multi-order weights and how BTWalk
may deal with them accordingly. Existing random walk
methods [12], [19] are only able to deal with one distribution
in a network, while BTWalk can handle all of them at
the same time in one network. Moreover, we prove that
BTWalk is equivalent to sampling directly over the multi-
order proximity matrix while avoiding the tedious matrix
computation (see Lemma 1). In other words, our approach is
scalable for multi-order learning with theoretical guarantee
for its equivalence as an alternative.

3) Node-specific multi-order weighting by neighbor-
hood size estimation. How to determine proper and ex-
pressive node-specific multi-order weights in networks is
another problem. In many real-world cases, the sizes of
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k-hop neighborhoods can vary as shown in Fig. 2. Here
we give a toy example: there is a small clique (including
node i) where only very few nodes connect to the rest of
the network. As the random walk from i continues, the
neighborhoods of node i will hardly become larger since
the random walk is almost constrained in the clique (like
the green line in Fig. 2). In this case, a long random walk
sequence can be unnecessary since most information is
repeated. In comparison, when a low-degree node is con-
nected to a high-degree node, the low-degree node will gain
a large 2-hop neighborhoods (e.g. the blue line in Fig. 2). To
learn more structural information, more times of sampling
on 2-hop are needed in such a case. However, most random
walk based methods [12], [13], [14] sample one node per
hop, neglecting the varying size of neighborhoods.

To solve the problem, we propose to set the weight
of k-hop neighbors according to the k-hop neighborhood
size. As such, more flexible node sampling of BFS on k-
hop can be achieved with different quantities. However,
exactly counting this number can be intractable due to its
time complexity of O(|V|dk). For this reason, we develop an
embedding based estimation technique. Its better efficacy
against vanilla random walk with uniform size setting is
empirically verified in our experiments.

4) Cross-network embedding and alignment. An exten-
sion is made to the less studied cross-network setting, which
is useful for tasks like network alignment. We resort to an
end-to-end learning paradigm based on the expectation-
maximization (EM) protocol, for node embedding and align-
ment. In an EM iteration, it jointly embeds two networks
and aligns them by learned node embedding. While in
contrast, some embedding-based network alignment meth-
ods [21], [22] train node embedding and learn cross-network
mapping in two stages, which can be less optimal for the
high non-linear structure of networks [8], [23] and lack of
training data (10%-30% ratio) [24], [25]. Apart from this,
there are other two important features of the cross-network
embedding framework: i) it is fitted for most single-network
embedding methods; ii) it is able to embed pairwise node
attributes while most attribute-based embedding methods
only preserve node-wise attributes.

Summarizing the above features, in a nutshell, this paper
makes the following main contributions:

1) We define a new node-specific weighted objective. It
incorporates multi-order proximity information and is fur-
ther specified by the combination of Laplacian Eigenmaps
and Skip-Gram models. To our best knowledge, this is the
first multi-order proximity objective for network embedding
that is node-specific. It provides a direct control to keep
balance among the different orders of proximity.

2) For model learning, we propose our Branching Tree
Random Walk (BTWalk, see Alg. 1), which exploits neigh-
borhoods by a combination of BFS and DFS. Notably, our
theoretical study proves to guarantee its equivalence to
directly computing the multi-order proximity matrix (see
Definition 3.3), which is intractable for large networks. We
term the resulting embedding method BTVec (see Alg. 2).

3) To explore the cross-network information, we develop
an end-to-end joint embedding and alignment method
under the EM framework, namely Vec4Cross. This is in
contrast to [21], [22] performing the two tasks separately.

TABLE 2: Main notations and description used in this paper.
Notations with ∗ are hyper-parameters.

Single-network model: BTVec
G = (V, E,A) network where V is vertex set, E is edge

set, and A is adjacency matrix
K∗ maximum hop
N (k)(v) k-hop neighbors of node v
f(v), g(v) vertex and context embedding for node v
z∗ dimension of latent vector space
D degree matrix
P 1-hop transition probability matrix
M(k) k-th order weight matrix
A(k) k-th order proximity matrix
Ã(k) k-hop multi-order proximity matrix
α∗ weight of the Laplacian Regularizer term
w∗ used in estimating sizes of neighborhoods

Cross-network framework: Vec4Cross, and our BTCross
Gs, Gt source network and target network for

cross-network embedding
T set of seed matchings
UT nodes outside the seed set for matching
C matching confidence matrix
N∗m maximum number of estimated matching

nodes for each node
N∗p maximum number of newly estimated

matchings
ti = {ti1, . . . , tiS} set of estimated matchings for node vi
ξi = {ξi1, . . . , ξiS} associated confidence of elements in ti
φ(v) ground-truth matching of node v
Θ parameters of the framework
Semb node embedding similarity
Sadd matching scores given by the additional

classifier
γ∗ weight of non-common-neighbor penalty
β∗ weight of alignment loss

Its practical utility is improved as it can incorporate both
handcrafted features and learned embedding features. Our
Vec4Cross framework can also reuse the existing embedding
models e.g. node2vec, DeepWalk as well as the proposed
BTVec in an out-of-box manner, termed BTCross (see Alg. 3).

4) Experimental results on various real-world datasets
with popular tasks show the state-of-the-art performance of
our approach. The source code will be released.

2 RELATED WORKS

We discuss related methods that basically span the follow-
ing two threads of research in the field.

2.1 Single-network Embedding

Network embedding can be generally divided to three
groups: shallow models [9], [12], [13], [16], deep models [8],
[18], and those by matrix factorization [5], [26], [27], [28].

Shallow models are popular for large-scale networks.
DeepWalk [12] first combines the random walks and neural
language model i.e. Skip-Gram [29] to generate the node
embedding. Then node2vec [13] designs a novel strategy
to walk on a graph which explores neighborhoods by
both breadth-first and depth-first strategies. It uses two
parameters, namely ‘return parameter’ and ‘in-out param-
eter’, to control the walking procedure, which is actually
a second-order Markov chain with O(|V|2) time complexity
to compute the transition probability matrix. In comparison,
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our BTWalk proposes to sample BFS neighbors and DFS
neighbors simultaneously without any extra efforts on the
computation of transition probability matrix. It results in
a time complexity linear to the number of walks. LINE [9]
explicitly considers the first-order and second-order proxim-
ity. struc2vec [16] proposes to embed nodes with a similar
structure closely by structure-targeted random walk.

GraRep [10] solves the embedding by matrix factoriza-
tion for random walk and Skip-Gram while also taking
high-order proximity information into consideration. How-
ever, it can not preserve the proximity information of differ-
ent orders jointly. [26], [28] treat the network embedding
task as sparse matrix factorization and [26] proposes to
unify some shallow models within a matrix factorization
framework. [6], [7] propose to preserve multi-order proxim-
ity by matrix factorization with some mathematical tricks.

There are also deep network methods like [8], [18], while
they have scalability issues for large networks.

2.2 Network Alignment
Relevant methods can be mainly divided into handcrafted
feature-based and embedding-based approaches.

Handcrafted feature-based methods can yield promising
results. Given seed alignments, MNA [30] extracts pairwise
features from multiple networks and then solves network
alignment as a stable matching problem. The features in-
clude the number of common neighbors, Jaccard similar-
ity of users’ neighborhoods, and Adamic/Adar measure.
BASS [25] jointly models consistencies for handcrafted fea-
tures, including Jaccard similarity of users’ neighborhoods,
usernames’ edit distance, and the features of social contents,
and then employs EM algorithm to learn the classifier’s pa-
rameter in a bootstrapping framework. In each EM iteration,
it chooses the common neighbors as matching candidates
and aligns them afterwards. These methods, in general, lack
the capacity to fully explore the structure by learning. Hence
recently learning based and especially embedding based
methods are receiving more attention.

For embedding-based approaches, some works [31], [32]
train node embeddings by forcing the identical nodes across
networks to be the same. While some other works [21], [22]
follow a specific pipeline: 1) Generate node representations
based on matrix factorization [31] or Skip-gram [22], with
the supervision of seed matchings; 2) Use a similarity func-
tion sim : V × V → R to measure the pairwise embedding
similarity between nodes, e.g. cosine similarity [21], [22]
or Euclidean distance [33]; 3) Match node pairs for those
with high similarity. However, all the above methods cannot
achieve joint end-to-end learning for both embedding and
similarity, making the pipeline less optimal for the align-
ment task. The extension of our proposed BTCross fills this
gap for its unique differentiable nature.

2.3 Remarks
In summary, our proposed approach with the multi-order
proximity model tries to satisfy the desirable properties for
network embedding: 1) scalable and fast to deal with large
networks; 2) learning with an explicit objective; 3) preserv-
ing rich information (structure, proximity, etc.); 4) end-to-
end learning for cross-network embedding and alignment.

In the following, we first present our embedding ap-
proach for single network, then we show how to extend
our technique to perform joint embedding and alignment.

3 BTVEC: MULTI-ORDER PROXIMITY PRESERVED
EMBEDDING VIA BTWALK

Before going to the details, we present the whole picture
in Fig. 3. On one hand, we explicitly define the multi-
order proximity matrix (Sec. 3.1), based on which a multi-
order objective encoding node-specific weights is devised
(Sec. 3.1 for its most general form; Sec. 3.2 for the objective
used in our paper; Sec. 3.3 for node-specific weighting). On
the other hand, the Branching Tree Random Walk (namely
BTWalk) which incorporates the BFS/DFS neighborhood
structure information is devised also based on the multi-
order proximity matrix (Sec. 3.1), to learn the resulting
embedding model regarding with the multi-order objective.

3.1 Preliminary
First, we formally define network and network embedding.

Definition 3.1. Network. For network G = (V, E ,A), V =
{v1, v2, . . . } is the node set, E = {(vi, vj)} is the edge set
between nodes, and A is the adjacency matrix of G. If there exists
an edge from vi to vj , then the binary tuple (vi, vj) ∈ E , and
the corresponding weight Ai,j > 0. Note Aij is not necessarily
equal to Aj,i for a directed edge.

Definition 3.2. Network embedding. Given network G, net-
work embedding aims to encode each node v ∈ V into a low-
dimensional latent space with a mapping function f : v → R

z ,
where z is the dimension of the latent space. In this paper, we also
use the term ‘node embedding’ exchangeably.

The adjacency matrix A mainly describes the low-order
connections between nodes. To preserve multi-order prox-
imity, a polynomial function of adjacency matrix is defined
to account for different orders [6], [7]:

Ã =
K∑
k=1

m(k)Ak. (1)

whereK is the maximum hop,m(k) ≥ 0 is the weight for the
k-th order proximity. However, such a simple weighted sum
cannot directly model the node-level multi-order features
which is important for fine-grained node representation.

In this paper, we propose and formally define the so-
called multi-order proximity matrix Ã(K) as follows1.

Definition 3.3. Multi-order proximity matrix Ã(K). Given
G = (V, E ,A), we denote its out degree matrix as D =
diag(dout1 , dout2 , ...), where douti =

∑
jAi,j is the out degree for

node vi, and P = D−1A denotes transition probability matrix.
Then the multi-order proximity matrix Ã(K) is defined as:

Ã(K) =
K∑
k=1

M(k)A(k),A(k) = APk−1, (2)

where the weight matrix M(k) = diag(m
(k)
1 ,m

(k)
2 , . . . ,m

(k)
|V|)

(k = 1, 2, · · · ,K) controls weights of k-th order proximity

1. In this paper, we denote ·̃ as multi-order related variables.
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Theoretical proof for its cost-efficiency is in Lemma 1
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   Sec. 3.4 Sampling via
Branching Tree Random Walk

Sec. 3.5 Objective
Learning by ASGD

General form: Eq. 3 
Specific form: Eq. 7         
  * Skip-Gram (for
conditional probability)     
  * Laplacian Regularizer
(for connection strength)

  Update embedding by     
  ASGD, according to  
                     Sec. 3.5

     Multi-order objective    
              Sec.3.2

Embedding lookup table                  
Def. 3.2, Sec. 3.1

 1      2                  N 
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(number of
nodes)

Main contributions: Sec. 3.3, Sec. 3.4

Node-specific multi-order weighting,
Eq. 10, Sec. 3.3 

* Estimate neighborhood size to explore
fine-grained multi-order features

Fig. 3: Our single network embedding approach as described in Sec. 3 (see also in Alg. 2). Boxes in the same color denote
functions/definitions from the same subsection, which are sketched at the top and detailed in the bottom, respectively.
Beginning from the left part, we give some preliminary in Sec. 3.1, where we define a node-specific multi-order proximity
matrix Ã(K) by adjacency matrix A, transition probability P, and node-specific multi-order weight matrices M(k) (k =
1, 2, · · · ,K). Then in Sec. 3.2, we introduce a new designed objective with a combination of Skip-Gram and Laplacian
Regularizer. The bottom right part describes the model learning procedure. To conduct our BTWalk sampling strategy
whose efficiency and effectiveness is proved in Lemma 1, we start with sampling a starting node from the origin network.
Then in the yellow box, we get the corresponding node-specific multi-order weights through estimating the neighborhood
size, which indicates the node-specific multi-order information. After that, BTWalk runs according to the sampled nodes’
multi-order weights, as shown in the grey box. Node embedding is updated by ASGD according to the defined objective.

in Ã(K), and K is the maximum hop. Matrix M(k) is node-
specific since the multi-order weights mi = (m

(1)
i , · · · ,m(K)

i )
are personalized for different nodes. For nodes vi and vj , if the
inside A(k)

i,j > 0(k ≤ K), then the multi-order proximity matrix
Ã(K) preserves the multi-order proximity between vi and vj .
Nodes with high proximity should be close in embedding space.

Based on the multi-order proximity matrix Ã(K), the
objective of a general form can be reached by:

Ltotal =
∑
i,j

Ã
(K)
i,j L(vi, vj), (3)

where L(vi, vj) is the loss function for a single positive node
pair. We are going to discuss about the specific design of our
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objective in the next subsection.

3.2 Objective Design for Multi-order Proximity

We aim to learn two mapping functions [9] f, g : V → Rz ,
where f and g denotes the embedding for ‘vertex’ and ‘con-
text’ representation respectively, following [9], [17]. Here
‘vertex’ nodes are used to predict ‘context’ nodes. We pro-
pose the embedding model which is based on Skip-Gram
and meanwhile introducing the ideas from Laplacian Eigen-
maps (LE) [2]. LE aims to embed nodes sharing proximity
closely, while Skip-Gram aims to embed nodes with similar
neighborhoods [9]. Both have been respectively used in
existing embedding literature [8], [32] due to their good
performance and scalability in network embedding. The
combination of LE and Skip-Gram is a natural extension.
Based on the node-specific multi-order proximity matrix
Ã(K), we further design the whole objective as Eq. 7.

Laplacian Regularizer Term. Following [2], we adopt
Laplacian Regularizer to model the connection strength.
For each Ã

(K)
i,j > 0, we call vi the ‘vertex’ node and vj

the ‘context’ node [9]. For proximity preservation, node vi
should be embedded as a ‘vertex’ close to vj as a ‘context’.
The loss of connection strength is defined as:

Llap(Ã
(K)) =

∑
i,j

Ã
(K)
i,j ‖f(vi)− g(vj)‖22. (4)

Especially, when we treat ‘vertex’ and ‘context’ in the same
way, i.e. f ≡ g, the form is the same as LE [2].

Skip-Gram Term. Skip-Gram is originally used in lan-
guage neural models [17], which then becomes popular in
network embedding [9], [11], [12], [13]. Given vertex vi and
context node vj , softmax is used to define the probability:

p(vj |vi) =
exp

(
f(vi)

>g(vj)
)∑

j′ exp
(
f(vi)>g(vj′)

) . (5)

However, it is intimidating to traverse over all the neg-
ative nodes vj′ . To maximize the probability in a tractable
way, the softmax probability is substituted with a sigmoid
score function σ(·), and negative sampling [17] is adopted
based on noise contrastive estimation [34]. For each sampled
positive node pair (vi, vj), we sample B negative nodes
denoted as vn from a context-independent noise distribu-
tion Pn. Specifically, we set Pn = (doutn )3/4 which works
empirically well [9], [17]. Then the objective becomes:

Lsg(Ã
(K)) =

∑
i,j

Ã
(K)
i,j

[
log σ

(
f(vi)

>g(vj)
)

+BEvn∼Pn
log σ

(
− f(vi)

>g(vn)
)]
.

(6)

The overall loss can be obtained by adding Laplacian
Regularizer and Skip-Gram model together weighted by α:

Ltotal(Ã
(K)) = αLlap(Ã

(K)) + Lsg(Ã
(K)). (7)

3.3 Node-specific Multi-order Weighting

In this part, we propose an adaptive strategy for setting
multi-order weights M(k) (k = 1, 2, · · · ,K). For node vi, we
define its k-hop neighborhood asN (k)(vi) = {vj |A(k)

i,j > 0}.

Since the k-hop neighborhood size |N (k)(vi)| can somehow
indicate the difficulty to fit k-th order proximity, we tend to
give a larger m(k)

i (k = 1, 2, · · · ,K) for a larger |N (k)(vi)|.
Considering that |N (k)(vi)| can grow irregularly, and accu-
rate counting of |N (k)(vi)| is intractable, here we propose to
estimate |N (k)(vi)| by the learned embedding functions f
and g in the current iteration. Since the embeddings evolve
during training, the weights mi = (m

(1)
i ,m

(2)
i , · · · ,m(K)

i )
also evolve dynamically and adaptively until it converges.

To start with, we estimate the k-hop connection strengths
between nodes. In this paper, for tractable estimation, we
assume there is little overlap among k-hop neighborhoods
when the max hop K is small and the network is large. This
is in fact a moderate condition as the neighborhood size
usually grows quickly e.g. in power law. Suppose node vj
is sampled on k-hop for the first time by vi, then we can
assume Ã

(K)
i,j ∝ A

(k)
i,j , which is given by:

Ã
(K)
i,j =

Bd̃
out(K)
i d̃

in(K)
j∑

l D̃
(K)
l,l

exp
(
f(vi)

>g(vj)
)
, (8)

where the notation ·̃ denotes the versions of variables with
multi-order information (akin to Ã(K) in Eq. 2). Note dini
(douti ) denotes the in (out) degree of node vi.

To achieve an analytical solution, we directly borrow the
optimal solution in Skip-Gram methods as given by [35]:

f(vi)
>g(vj) = log

Ã
(K)
i,j

∑
l D̃

(K)
l,l

d̃
out(K)
i d̃

in(K)
j

− logB. (9)

Then according to |N (k)(vi)| = D
(k)
i,i /Ej∼A(k)

i,·
A

(k)
i,j , k-

hop degree matrix D(k) = D, and supposing d̃in(K) ∝ din,
we set the weights of proximity orders as Eq. 10, aiming to
perform more sampling for a larger neighborhood size:

m
(k)
i =

(
|N (k)|
|N (1)|

)w
≈
(
dinj exp

(
f(vi)

>g(vj)
)

dink exp (f(vi)>g(vk))

)w
, (10)

where hyper-parameter w controls how much the weight
m

(k)
i depends on the estimated neighborhood size |N (k)|

and |N (1)|. In this way, the weights of proximity orders
can be more precisely set for effective learning. Particularly,
when w = 0, it becomes the vanilla random walk (i.e. the
random walk strategy in DeepWalk [12]), which samples
one node per hop.

3.4 Sampling via Branching Tree Random Walk

In this subsection, we introduce a random walk strategy,
BTWalk, which serves for a general objective based on
the multi-order proximity matrix Ã(K) as given by Eq. 3,
namely Ltotal =

∑
i,j Ã

(K)
i,j L(vi, vj). One of the basic ideas

to optimize the objective is to calculate the value of each
element in Ã(K) and adopt edge sampling [9] over Ã(K)

afterwards. However, since the computing of Ã(K) is ex-
tremely time-consuming, such an approach is impracticable
for a big K. To address the problem, we propose an ef-
ficient sampling strategy, BTWalk, which runs in the style
of BFS/DFS composition. The equivalence of optimizing
Eq. 3 directly by sampling over Ã(K) and sampling through
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Algorithm 1: BTWalk: Branching Tree Random
Walk on network for node sampling

Input: starting node vi; 1-hop transition matrix P;
weights of proximity order {m(1)

i , . . . ,m
(K)
i };

max hops K;
Output: Sampled node list Walk;

1 Initialize Walk = [];
2 for k = 1 : K do
3 Float r = m

(k)
i e.g. by Eq. 10;

4 // r is the expectation of the sample # on k-hop;
5 while r > 0 do
6 Sample vj by probability Pi,j ;
7 if r ≥ 1 then
8 Append(Walk, vj); // Add vj to Walk;
9 else

10 Generate a random value e ∈ (0, 1);
11 // Accept the sample vj by probability r;

if e < r then
12 Append(Walk, vj);

13 r = r − 1;

14 vi = vj ;

15 Return Walk;

BTWalk is proved in Lemma 1 while our BTWalk can be
more efficient in magnitude as an alternative (see details in
Lemma 1). For implementation, we use Eq. 7 as the objective
and set the multi-order weights as discussed in Sec. 3.3.

3.4.1 BTWalk by BFS/DFS Composition
Given an objective in the form of Eq. 3, BTWalk achieves
learning within a linear time complexity. Specifically, BT-
Walk adopts the following sampling pipeline which com-
bines BFS and DFS: 1) Sample a starting node vi by proba-
bility Di,i/

∑
jDj,j , whose weights of proximity order are

mi = (m
(1)
i ,m

(2)
i , . . . ,m

(K)
i ); 2) Set k = 1, current node

is vi; 3) On k-hop, sample dm(k)
i e nodes from vi’s 1-hop

neighbors by distribution Pi,·; 4) Accept the nodes except
the last one in step 3 as the random walk result; 5) Accept the
last sampled nodes in step 3 by probability m(k)

i − bm
(k)
i c,

with the node denoted as vj ; 6) k = k + 1; 7) Set vj as the
current node, vi = vj , then repeat step 3 to step 6 until K
hop is reached. The procedure of BTWalk with weights is
also detailed in Alg. 1. Note that such a pipeline by BTWalk
is equal to the former mentioned approach [9] directly doing
sampling over Ã(K), as theoretically proved in Lemma 1.

Transition probability. We give BTWalk’s transition
probability mathematically in this paragraph. We denote a
random walk sequence starting from node x0 by BTWalk
as (x1,1, x1,2, . . . ), where xk,i denotes the node by i-th
sampling on k-hop, and x0 is the starting node. The multi-
order transition probability is defined as:

P (xk+1,i = vc|xk,1 = vb, x0 = va;M(1),...,(K)) = Pb,c,

i = 1, 2, . . . , dm(k+1)
a e,

(11)
from which we can find that the next sampled node is
determined on both the starting node and the sampled node

on the former hop, with node-specific weights of proxim-
ity orders as parameters. Different from DeepWalk where
the sampled node depends on the former one step and
node2vec where the sampled node depends on the former
two steps, BTWalk runs in an order weight distribution
insensitive way. Detailed comparison will be discussed.

Lemma 1. Given network G = (V, E ,A), maximum hop K,
and the multi-order proximity matrix Ã(K), BTWalk is ensured to
achieve that for any positive node pair (vi, vj), it is sampled with
the same probability as performing edge sampling [9] on Ã(K),
while avoiding its complex computation. In this way, BTWalk
reduces the O(|V|dK) time complexity to O(|V|K).

Proof. Given Ã(K), if we directly sample from Ã(K), we
have P̃

(K)
i,j denoting the probability (vi, vj) is sampled:

P̃
(K)
i,j = Ã

(K)
i,j /D

(K)
i,i ,D

(K)
i,i =

|V|∑
j=1

Ã
(K)
i,j , (12)

where D(K) is the degree matrix by Ã(K).
Let P (j|i;K) denote the probability that node vj can be

reached within K-hops BTWalk from vi. It is defined as:

P (j|i;K) = E
(K)
i,j /N

(K), (13)

whereE(K)
i,j is expectation of the times that node vj shows in

K-hop BTWalk from vi, and N (K) denotes the expectation
of total number of sampled nodes within K-hop BTWalk.

Proving the lemma is equal to prove:

P (j|i;K) = P̃
(K)
i,j . (14)

When K = 1, we have E
(1)
i,j = N (1)Ai,j/Di,i. Since

Ã(1) = m
(1)
i A and D̃(1) = m

(1)
i D, it is easy to find that

Eq. 14 holds in this case. Assuming that Eq. 14 holds with
(K ≥ 1), we need to prove that it also holds for K = K+ 1.
We denote P(k) = Pk as k-hop transition matrix, then for
P (j|i;K + 1) we have:

P (j|i;K + 1) =
E

(K+1)
i,j

N (K+1)
=

E
(K)
i,j + ∆N (K+1) ∑|V|

p=1 P
(K)
i,p Pp,j

N (K) + ∆N (K+1)
,

(15)
where ∆N (K) = N (K) − N (K−1) (N (0) = 0) denotes the
sampling number of BTWalk on the K-hop. Then we try to
figure out P̃(K+1)

i,j . For Ã(K+1)
i,j and D̃

(K+1)
i,i , we have:

Ã
(K+1)
i,j = Ã

(K)
i,j +m

(K+1)
i A

(K+1)
i,j

= Ã
(K)
i,j +m

(K+1)
i

|V|∑
p=1

A
(K)
i,p Pp,j ,

D̃
(K+1)
i,i = D̃

(K)
i,i +m

(K+1)
i

|V|∑
k=1

A
(K+1)
i,k

= D̃
(K)
i,i +m

(K+1)
i

|V|∑
k=1

|V|∑
l=1

A
(K)
i,l Pl,k

= D̃
(K)
i,i +m

(K+1)
i

|V|∑
l=1

A
(K)
i,l

(16)
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Algorithm 2: BTVec: Branching Tree Random
Walk for node vector representation.

Input: network G = (V, E ,A); max hop K; number
of walks Nw; number of negative samples B;

Output: vertex embedding function f ;
1 Degree matrix D = diag(

∑
jA1,j ,

∑
jA2,j , ...);

2 Transition matrix P = D−1A;
3 Randomly initialize embedding mapping f , g;
4 Learning rate init lr = 0.025 (same as in [9]);
5 lr = init lr;
6 for t1 = 1 : Nw do
7 Sample a starting node vi from V by probability

Di,i/
∑
kDk,k;

8 Estimate k-hop specific weight m(k)
i by Eq. 10 in

Sec. 3.3;
9 Walk = BTWalk(vi,P,m

(1),··· ,(K)
i ,K) by

Alg. 1;
10 for vj ∈Walk do
11 Update pos(vi, vj) (obj. in Eq. 7, Sec. 3.2);
12 for t2 = 1 : B do
13 Sample vn from Pn;
14 Update neg(vi, vn) (obj. in Eq. 7, Sec. 3.2);

15 lr = init lr · (Nw − t1)/Nw;

By P̃
(K+1)
i,j = Ã

(K+1)
i,j /D̃

(K+1)
i,i , we can reach that:

P̃
(K+1)
i,j =

Ã
(K)
i,j /D̃

(K)
i,i +m

(K+1)
i

∑|V|
p=1(A

(K)
i,p Pp,j/D̃

(K)
i,i )

1 +m
(K+1)
i

∑|V|
l=1 A

(K)
i,l /D̃

(K)
i,i

=

P̃
(K)
i,j +m

(K+1)
i

∑|V|
p=1

(
A

(K)
i,p Pp,j∑K

q=1m
(q)
i Di,i

)
1 +m

(K+1)
i

∑|V|
l=1 A

(K)
i,l∑K

q=1m
(q)
i Di,i

=
P (j|i;K) +

m
(K+1)
i∑K

q=1m
(q)
i

∑|V|
p=1 P

(K)
i,p Pp,j

1 +
m

(K+1)
i∑K

q=1m
(q)
i

,

(17)

where the proof makes use of the following obvious result:

|V|∑
p=1

A
(k)
i,p =

|V|∑
p=1

Ai,p = Di,i,

D̃
(k)
i,i =

k∑
q=1

m
(q)
i Di,i,

A
(k)
i,p = Di,iP

(k)
i,p .

(18)

So if set ∆N(k) ∝ m
(k)
i (k = 1, . . . ,K) when starting

from node vi, Eq. 14 also holds for K + 1 by mathematical
induction. That means BTWalk can get the same result
without time-consuming matrix multiplication for Ã(K).
Now we have finished the proof.

3.4.2 Comparison with Other Random-walk Methods
We compare BTWalk with popular random walk methods
mainly on their transition probability. We denote a random

TABLE 3: Time complexity comparison. Denote Nw for
number of walks (Nw ∝ |V|), K for the max hop, and d
for average node degree.

Methods Random walk Node-specific
complexity multi-order proximity

Deepwalk O(NwK) ×
LINE O(Nw) ×
node2vec O(NwK) +O(|V|d2) ×
BTWalk O(NwK) X

walk sequence starting from node x0 by peer methods as
{x1, x2, . . . , xK}.

DeepWalk [12]. Its random walk strategy can be seen
as a special case of BTWalk, with multi-order weight matrix
M(k) = I. The transition probability is defined as:

P (xk+1 = vb|xk = va) = Pa,b. (19)

LINE [9]. It only takes 1-hop neighbors into considera-
tion. It is a special case of BTWalk withK = 1 and M(1) = I.
The transition probability is defined as:

P (x1 = vb|x0 = va) = Pa,b. (20)

node2vec [13]. It explores BFS/DFS structure in a
second-order style. First, it turns the adjacency matrix A
into a second-order adjacency tensor A ∈ R|V|×|V|×|V| with
two parameters, namely a ‘return parameter’ p and an ‘in-
out parameter’ q. Such a preprocessing procedure may incur
a complexity of O(|V|d2

) for both time and space, where d
is the average degree of the nodes. Formally the tensor A is
given by (as indexed by ‘a’, ‘b’, ‘c’):

Aa,b,c =



1

p
Ab,c c = a

Ab,c Pa,bPb,cPa,c > 0, a 6= c

1

q
Ab,c Pa,bPb,c > 0,Pa,c = 0, a 6= c

0 otherwise

. (21)

Then a second-order transition probability tensor Pa,b,c =

Aa,b,c/
∑|V|
i=1 Aa,b,i can be reached. The second-order tran-

sition probability is defined as:

P (xk+2 = vc|xk+1 = vb, xk = va) = Pa,b,c. (22)

Note that node2vec does not explicitly preserve multi-
order proximity and the weights of proximity order M(k)

are not defined in that method. Compared with the above
three popular random walk strategies, BTWalk achieves to
preserve node-specific multi-order proximity in a compact
and efficient way as described in the former subsection. The
comparison is given in Table 3.

3.5 Objective Learning by ASGD
In this subsection, we summarize how the learning pipeline
incorporates with the techniques discussed in the former
subsections. To begin with, we use Eq. 7 as the objective
(Sec. 3.2) and set multi-order weights by neighborhood-
aware weighting (Sec. 3.3). The whole optimization proce-
dure is in a typical multi-thread ASGD [36] style: In one
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iteration, each thread first samples a starting node vi. Then
it estimates the k-hop specific weight m(k)

i (k = 1, 2, · · · ,K)
and conducts BTWalk according to the weights. Once a
walk sequence is generated, it updates the embedding by
gradient descent. We have described the detailed algorithms
in Alg. 2. The whole working pipeline is shown in Fig. 3.

4 VEC4CROSS: CROSS-NETWORK EMBEDDING

In the task of network alignment, two networks are discon-
nected but the nodes in the two networks have a deeper
relationship – they can be aligned. Two nodes are aligned
means they are actually identical nodes in different net-
works. Single-network embedding methods usually fail to
deal with such a situation. However, methods of single-
network embedding can be extended to cross-network for
network alignment (e.g. LINE in [22]).

In this section, we introduce such a framework,
Vec4Cross, that models cross-network matching links by
Gaussian Mixture Model (GMM) and learn up-to-date node
matching by Expectation-Maximization (EM). The frame-
work is designed to be general, which means it can incor-
porate any single-network embedding methods, including
BTVec, which leads to the resulting cross-network embed-
ding approach called Vec4Cross, as described in Alg. 3.

4.1 Overview and Preliminaries
We first introduce the task of network alignment and then
give the overview and basic concepts of Vec4Cross.

Network alignment (node matching). Given a source
network Gs = (Vs, Es,As), a target network Gt =
(Vt, Et,At),2 and partial node matching set T = {(u, v)|u ∈
Vs, v ∈ Vt} as seed alignments by certain means, network
alignment aims to predict the rest node matchings. We use
such an injective mapping function φ : Vs ∪ Vt → Vs ∪ Vt
to describe node matching. Note that we assume T 6= ∅.

Framework overview. Given two networks Gs and Gt,
our approach follows a common protocol in network align-
ment that the correspondences are established in a progres-
sive manner. Specifically, a few node correspondences are
set either by ground truth (in semi-supervised learning) or
by estimation with an existing matching algorithm [25], [37].
Starting with these seed alignments, the EM procedure is
performed: 1) In the E-step, we first define an alignment
confidence matrix C ∈ R|Vs|×|Vt|. Ci,j ∈ [0, 1] denotes the
matching certainty for the correspondence of pair (vsi , v

t
j),

which is measured by the pairwise node similarity across
Gs and Gt. The generation and updating of C will be
detailed in Sec. 4.2.2. In the later stage of E-step, according
to C, we select Np pairs of nodes with the highest matching
confidence as candidate matching pairs, and each node has
no more than Nm choices. We denote the alignment choices
for node vi as ti = {ti1, . . . , tiNm} with corresponding
confidences ξi = {ξi1, . . . , ξiNm}. 2) In M-step, we update
node embedding by cross-network embedding procedure
according to the known and newly estimated node match-
ings. The parameters of the additional classifier will also be
updated, when the extended node attributes are given.

2. In this paper, we use superscript s and t to denote variables for
source networks and target networks respectively.

Cross-Network
Embedding

Pairwise
Matching

Confidence

Other Info Additional
Classifier(s)

Matchingk+1

Matchingk

Networks
Gs, Gt

ground-truth
estimation

Unsupervised way
Pre-knowledge
Traditional ways
...

M-Step E-Step

Single-Network
Embedding

DeepWalk
node2vec
rrwRep
...

Vec4Cross framework

Fig. 4: Our Vec4Cross network alignment framework which
can incorporate the proposed BTVec as the single-network
embedding building block. Moreover, additional hand-
crafted features in dash box can also be incorporated.

Algorithm 3: BTCross (under our Vec4Cross
framework): Branching Tree Random Walk based
cross-network embedding and alignment.

Input: networks Gs and Gt; seed matchings T ; max
hop K; number of walks Nw for each
iteration; maximum number of newly
estimated matchings Np; maximum number
of matchings for one node Nm; total number
of iterations I ; learning rate lr = 0.025;

Output: vertex embedding function f ; matching
confidence matrix C;

1 Initialize embedding function f and classifier Sadd;
2 for i = 1 : I do
3 // E-step:
4 Update C by Eq. 26 (input f , Semb, Sadd);
5 Estimate (i+ 1) ∗Np pairs of node matchings

(input C, output estimated matching sets tk and
associated confidence sets ck for vk ∈ Vs ∪ Vt);

6 // M-step:
7 Obtain embedding function f by BTVec (Alg. 2)

by the joint learning objective Eq. 30 (or other
embedding models e.g. node2vec, deepWalk by
corresponding learning algorithms in [12], [13]);

8 Train optional classifier Sadd using extended
node attribute features if available;

4.2 The Vec4Cross Framework

We show how to employ GMM and EM in our approach.

4.2.1 Gaussian Mixture Model for Matching Estimation

Given an unmatched node vsi ∈ Vs, supposing we already
have its top-Nm candidate matchings ti = {ti1, . . . , tiNm}
with corresponding confidence ξi = {ξi1, . . . , ξiNm}, then
we use the Gaussian kernel function as a classifier to deter-
mine whether two nodes are matched. With f(·) denoted as
the embedding function and φ(·) denoted as the alignment
mapping function, the probability that node vtj ∈ Vt is
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matched with vsi is defined as:

pa(φ(vsi ) = vtj |vsi ) = exp(−‖f(vtj)− f(vsi )‖22), (23)

Assuming that the true alignment node φ(vsi ) ∈ ti, we
define the distribution of alignment nodes for vi by GMM:

P
(
φ(vsi )|Θ

)
=

Nm∑
k=1

wikpa(φ(vsi ) = tik|vsi ), (24)

where wik = ξik/
∑Nm

j=1 ξij , controls the weight of the k-
th Gaussian classifier. Θ refers to all parameters in the
model, including the node embedding function f and other
learnable parameters of the (optional) classifier. Supposing
that φ(·) is independent for different nodes (as assumed in
the paper), the joint distribution of φ(·) becomes the follows:

P (φ|Θ) =
∏

v∈Vs∪Vt

P
(
φ(v)|Θ

)
. (25)

4.2.2 Expectation-Maximization Learning
The estimated node matchings are generated by Eq. 24
and Eq. 25, then our model is learned by the following steps.

1) Initialization. In the beginning, the information about
node embedding and the score of the classifier are in
deficiency. To start the whole cross-network embedding
procedure, we first initialize the confidence matrix
according to the given seed matchings T . If handcrafted
features are given, we train additional classifiers (see
Sec. 4.2.3) with given seed alignments as positive samples
and those randomly matched pairs as negative samples. In
this way, the EM procedure is started. We denote the model
parameters in i-th iteration as Θ(i) in the following parts. In
particular, the initialized parameters are denoted as Θ(0).

2) E-step. This step updates the confidence matrix and then
select node pairs with top confidences as new matchings.

Confidence matrix updating. Both the embedding and
additional classifiers (if exists) are used to update C, where
the confidences are treated as latent variables in our model.
To combine the embedding and additional classifiers, we
use the max function to fuse the embedding similarity
function Semb(·, ·) and normalized prediction scores by the
additional classifier Sadd(·, ·) as follows:

Ci,j =


1, (vsi , v

t
j) ∈ T

0, (vsi , ·) ∈ T ∧ (·, vtj) ∈ T ∧ (vsi , v
t
j) /∈ T

max
(
Semb(v

s
i , v

t
j), Sadd(v

s
i , v

t
j)
)
, otherwise

.

(26)
Note that the classifier Sadd is designed orthogonal to

structure features and is also optional as shown in Fig. 4.1.
Node similarity with non-common-neighbor penalty.

We use cosine similarity with the penalty to measure cross-
network node embedding similarity:

Semb(v
s
i , v

t
j) =

(
1 + (1CA − 1)γ

)
CosSim(vsi , v

t
j), (27)

where 1CA is a signal function that will be set to 1 if vsi and
vtj share a common pair of matched nodes in neighborhood
and 0 otherwise. γ is the hyper-parameter which indicates
penalty weight to punish the node pairs with 1CA = 0.
In extreme cases, if we set γ = 1, then all node pairs

without a common matched node in the neighborhood will
be regarded as impossible to be matched. If γ is set to 0, then
1CA will make no effect on node similarity measurement.
The cosine similarity between nodes vi, vj is defined as:

CosSim(vi, vj) =
f(vi)

>f(vj)

‖f(vi)‖2‖f(vj)‖2
. (28)

We calculate the confidence matrix and select node pairs
with relatively high confidence as newly estimated match-
ings, then set ξik with the corresponding confidence.

Estimated matchings selection. Obtaining the confi-
dence matrix C, we select node pairs with top confidences
as newly estimated matchings. In the matching procedure,
we limit the total number of estimated matchings to no more
than Np, and each node has no more than Nm matching
candidates. For nodes in seed matchings, we do not gen-
erate corresponding newly estimated matchings. As such,
estimated matchings are updated to learn parameters Θ(i).

At last, we give the expectation of log probability of
Eq. 25 as follows, preparing for the coming M-step:

Q(Θ,Θ(i)) = E

[
logP (φ|Θ(i))

∣∣T,Gs, Gt]. (29)

3) M-step. To embed network structures, the loss of source
network Ls and that of target Lt as constraints (e.g. Eg. 7)
are added. While alternatives can be other single-network
embedding methods. Accordingly, the objective becomes:

Θ
(i+1)
l = arg min

Θl

 Ls + Lt︸ ︷︷ ︸
embedding loss

−βQ(Θ,Θ(i))︸ ︷︷ ︸
alignment loss

 , (30)

where β controls the weight of the expectation term in the
final objective. Note our Vec4Cross framework is orthogonal
to the specific design of the embedding model, and the
embedding terms Ls and Lt in Eq. 30 can take different
forms. When the loss in Eq. 7 is used, the whole loss function
can be readily solved by BTWalk and ASGD, similar to
the procedure in Sec. 3.4, which leads to our alignment
method namely BTCross. Alternatively, our framework can
also incorporate other embedding models e.g. node2vec and
DeepWalk by replacing the embedding terms Ls and Lt,
accordingly. In such cases, the Vec4Cross framework can
also derive other joint embedding and alignment algorithms
by adopting the corresponding learning algorithm in [12],
[13]. In this paper, we term them n2v-Cross and dw-Cross,
respectively, which will also be evaluated in experiments.

4.2.3 Extended Features for Matching Estimation
Many handcrafted features have been devised for differ-
ent types of networks. For example, for PPI networks,
graphlets [38] show good capacity and Jaccard Coefficient
is commonly used in social network alignment [25], [30].
This part serves as an additional classifier as mentioned in
the confidence matrix updating step in Sec. 4.2.2.

Structural features. Traditional human-defined struc-
tural features can also contribute to accurate social network
alignment [25], [30]. Following the state-of-the-art network
alignment method using traditional features [25], we use the
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revised Jaccard Coefficient to indicate the tie consistency of
two nodes across networks. For a node pair (vsi , v

t
j), revised

Jaccard Coefficient is defined as follows:

Jr(u, v) =
|φ
(
N (vsi )

)
∩N (vtj)|

|N (vsi )|+ |N (vtj)| − |φ
(
N (vsi )

)
∩N (vtj)|

. (31)

Attribute features. Attributes can be diverse. For in-
stance, in social networks, username is supplementary to
the information beyond network structure. Intuitively, in a
small social group, people often choose different names to
distinguish themselves [31]. Edit distance ed(vi, vj) between
usernames of vi and vj is a popular measurement of simi-
larity between two strings.

Prediction scores. We train a linear SVM to predict the
probability that two nodes vi and vj are matched:

S1(vsi , v
t
j) = SVM

(
Jr(v

s
i , v

t
j), ed(vsi , v

t
j)
)
. (32)

4.3 Incorporating Single-Network Embedding Models
As shown in Line 7 of Alg. 3, our Vec4Cross framework
can incorporate most single-network embedding methods,
including BTVec, DeepWalk, node2vec. These variants will
be evaluated and termed as BTCross, dw-Cross, and n2v-
Cross, in the experiments. The learning procedure is also
identical to ASGD as described in Sec. 3.5.

5 EXPERIMENTS AND DISCUSSION

Experiments are performed on real-world datasets, with
single-network embedding tasks i.e. multi-label classifica-
tion and network reconstruction, as well as cross-network
embedding applications e.g. network alignment. Most of
the baselines, including LINE, DeepWalk, node2vec, FINAL,
IsoRank, REGAL, our proposed BTVec, and BTCross are
tested on a single machine using 16 threads with 128G mem-
ory, 4 physical CPU each with 12 cores (Intel(R) Xeon(R)
CPU E5-2678 v3 @ 2.50GHz). While the deep learning
method SDNE runs on a single GPU (NVIDIA Corporation
GP102 [GeForce GTX 1080 Ti]).

5.1 Single-network Tasks
5.1.1 Datasets, baselines, metrics and hyperparameters
Statistics of the tested social networks are given in Table 4.
And the distributions of nodes’ k-hop neighborhood sizes
w.r.t node degrees are given in Fig. 5. All of the datasets are
anonymized for privacy protection.

YouTube [20]: Users can add others to the friend list and
join interest groups as treated as user labels. It is a large
scale network with millions of nodes being very sparse.

YouTube-Cut [20]: In line with the protocol in [8], to
make it a smaller network that can be handled by the high
complexity model e.g. SDNE [8], we remove the unlabeled
nodes from raw YouTube. It is also quite sparse.

Flickr [39]: On the website of Flickr, users can tag photos
and join different interest groups. There are in total 195
interest groups used as labels in the raw dataset, many of
which have few nodes for the classification. To make the
experiment more convincing, we only retain 10 labels with
the largest number of nodes while making no change to the
network structure. It is a dense network.
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Fig. 5: The 2/3-hop neighborhood size w.r.t the 1-hop
neighborhood size (i.e. node degree) in YouTube, Flickr,
and BlogCatalog. It shows that nodes’ neighborhood sizes
usually grow unexpectedly, especially for low-degree nodes.

TABLE 4: Statistics for the single-network experiment.

Data YouTube YT-Cut Flickr BlogCtlog Weibo Twitter

|V| 1,138,499 22,579 80,513 10,312 3,154 2,458
|E| 2,990,443 95,506 5,899,882 333,983 241,736 95,034
#Labels 47 47 10 39 / /
Avg. Deg. 5 8 146 65 77 39

BlogCatalog [39]: each blog is organized by some spe-
cific categories, which are the labels of a blogger, and
bloggers have social connections with each other.

Weibo [24]: Weibo (https://www.weibo.com) is the
largest micro-blog in China. Users can post their thoughts
and photos, and can also follow or be followed by others.

Twitter [24]: Twitter is one of the most popular online
social network platforms where users post ‘tweets’ to share
their life moments. Social connections exist between users.

We compare with state-of-the-art embedding methods.
DeepWalk [12]3: combines random walks and the Skip-

Gram language model for embedding.
Node2vec [13]4: substitutes the random walk procedure

in DeepWalk as biased random walk.
SDNE [8]5: a deep model capturing network structure

and exploit the 1st-order and 2nd-order proximity jointly.
LINE [9]6: models the first-order and second-order prox-

imity by 1-hop vanilla random walk. We denote LINE-1st as
the first-order proximity version.

ProNE [40]7: initializes embedding by sparse matrix
factorization, with enhancement via spectral propagation.

VERSE [11]8: uses node similarity explicitly by Person-
alized PageRank (PPR), Adajcency Similarity, and SimRank,
and it is based on Skip-Gram.

The following metrics are used for different tasks.
Multi-label classification. Popular metrics [8], [9], [12],

[13], micro-F1 and macro-F1, are used in this paper.
Network reconstruction. precision@N is adopted for

performance evaluation. Given a network G, it is defined:

precision@N =

∣∣{(i, j)|∆i,j = 1, rank(i, j) < N, i < j}
∣∣

N
,

(33)

3. https://github.com/phanein/deepwalk
4. https://github.com/aditya-grover/node2vec
5. https://github.com/suanrong/SDNE
6. https://github.com/tangjianpku/LINE
7. https://github.com/THUDM/ProNE
8. https://github.com/xgfs/verse
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TABLE 5: Networks used on multi-label classification.

Networks 1-hop α 2-hop α w Nw #threads

Youtube 0.1 0.03 0.2 1e10

16Flickr 0.02 0.03 0.2 1e9
BlogCatalog 0.03 0.05 0.2 1e9
Youtube-Cut 0.1 0.1 0.2 1e8

where ∆i,j = 1 indicates that (vi, vj) ∈ E or (vj , vi) ∈ E ,
rank(i, j) is the rank of Euclidean distance between node
(vi, vj) among {(vi, vj)|vi, vj ∈ V, i < j}.

The hyperparameters of the compared methods are ei-
ther recommended by the original paper or fine-tuned to
achieve its best performance. The detailed settings are:

• DeepWalk: window size = 10, walk length K = 40,
number of walks Nw = 10.

• Node2vec: p = 2, q = 0.5, window size = 10, and
the rest parameters are the same as DeepWalk.

• SDNE: α = 100, β = 10, γ = 1, reg = 1, and
the layer size settings are [10312 − 1000 − 128] on
BlogCatalog, [22579 − 2000 − 128] on YouTube-Cut
as recommended in [8], and [3154 − 800 − 128] on
Weibo, [2458− 800− 128] on Twitter.

• LINE: the only parameterNw is the same as in BTVec.
• ProNE: the default setting, i.e. the term number of the

Chebyshev expansion k = 10, θ = 0.5, and µ = 0.2.
We use the enhanced embedding as the result.

• The proposed BTVec: see details in Table 5.

5.1.2 Experiments on Multi-Label Classification
For multi-label classification [41], each node has one or
more labels for prediction. First, we generate the repre-
sentations for nodes in the networks by BTVec and the
peer methods. Then we adopt the LIBLINEAR package [42]
to train the one-vs-rest Logistic regression classifiers. We
randomly sample a portion of the labeled nodes, whose
representations are set as training data and the rest for
testing. Specifically, we randomly sample 1% to 10% of
vertexes for training for YouTube, YouTube-Cut and Flickr,
10% to 90% for BlogCatalog. For each method, we repeat the
procedure for 10 trials, and the average results are reported.

As shown in Fig. 6, BTVec outperforms the compared
baselines consistently. We provide discussion as follows.

1) On the sparse networks (YouTube, YouTube-Cut) and
dense networks (BlogCatalog, Flickr), BTVec performs the
best, proving BTVec’s adaptability to different densities.

2) Compared with methods that only use 1st- and
2nd-order proximity (LINE, SDNE), BTVec(1-hop) keeps
outperforming them. Even compared with DeepWalk and
node2vec that make use of high-order proximity, BTVec(1-
hop) still outperforms them with limited proximity informa-
tion, indicating the superiority of our proposed objective.

3) BTVec also outperforms node2vec which searches the
neighborhoods by both BFS and DFS. It shows the greater
competence of BTWalk to preserve local structure in a much
more simple and faster way.

4) BTVec(2-hop) performs more stable than BTVec(1-
hop). It indicates that richer neighborhood information
(multi-order proximity modeling) can improve embedding.

We also conduct some further experiments in below.
Trade-off between speed and classification perfor-

mance. Fig. 7 shows time cost and performance on BlogCat-
alog. LINE is the fastest with high performance. node2vec
(p = 0.25 and q = 0.25 [13]) spends most of the time on
calculating the transition probability, which slows it down
severely compared with DeepWalk – a similar Random
Walk based algorithms. SDNE is a deep model with high
time complexity. In comparison, BTVec achieves the best
performance with a relatively low time cost.

Effect of K-hop Branching Tree random walk. As
shown in Fig. 6, BTVec(2-hop) outperforms its 1-hop ver-
sion. Further ablation study is performed on Flickr to eval-
uate the effect of the number of hops K, whose result
is shown in Fig. 8: 2-hop outperforms 1-hop significantly,
while the F1 score of 3-hop drops slightly compared with
2-hop. It also proves the robustness of our model against a
considerable part of noise (3-hop neighbors).

Scalability. Fig. 9 show the performance on BlogCatalog
by adopting a parallel implementation. In Fig. 9, the relative
speed of our method grows linearly with the number of
threads. Fig. 9 shows that the F1-scores are not affected by
the increased number of threads. These results verify the
scalability of our (α = 0.03 and Nw = 1e8).

5.1.3 Experiments on Network Reconstruction

A good network embedding method can preserve nodes’
original local structure, which can be evaluated by network
reconstruction. Given a network and the node representa-
tions, we reconstruct the network according to the distance
between node embeddings with the graph’s edges serving
as ground-truth. precision@N is used for evaluation.

The results are shown in Fig. 10. BTVec outperforms
consistently across all datasets. Our analysis is as follows:

1) For dense networks (BlogCatalog, Weibo) whose com-
plex structures bring a challenge to local structure preserv-
ing, BTVec performs well. It also works robustly on the
relatively sparser network (Twitter).

2) Only using raw adjacency matrix, BTVec (1-hop)
outperforms SDNE and LINE, showing the advantage of
combining Laplacian Regularizer and Skip-Gram.

3) It can also be found that BTVec (2-hop) sometimes
performs worse than BTVec (1-hop). It suggests that higher-
order proximity might not contribute to local structure
preserving but weight more on global structure.

4) Note DeepWalk performs also competitively with
BTVec in most cases. It can be possibly interpreted as a result
of long-range neighborhood modeling.

5.2 Cross-network Alignment

5.2.1 Datasets, baselines, metrics and hyperparameters

The statistics of datasets are shown in Table 6. For privacy,
sensitive information like usernames is anonymized.

Facebook-Twitter (Fb-Tt) [24]: The ground truth align-
ment information is crawled from the website About.Me, a
third-party for associating users’ online accounts. To have
a clean and direct evaluation, we remove the nodes (and
their edges) without ground-truth matching information
and those whose degree is less than 5 from the datasets.
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Douban-Weibo (Db-Wb) [24]: Weibo and Douban
(https://www.douban.com/) are the largest microblog site
and movie-rating site in China respectively. The alignment
information is crawled from user pages of Douban and

TABLE 6: Statistics for the cross-network experiment.

cross-network Fb-Tt Db-Wb Flickr

|VS | 2,458(Fb) 3,154(Db) 1,191|VT | 2,458(Tt) 3,154(Wb)
|ES | 40,298 301,074 509,816|ET | 95,034 241,736
Avg. Deg. of GS 16 95 428
Avg. Deg. of GT 39 77
Overlap 0.28 0.36 /

network information from each platform respectively. Akin
to Fb-Tt, we cut nodes without ground-truth matching and
whose degrees are less than 30 from the datasets.

Flickr [39]: To make a more comprehensive evaluation
by varying the degree of overlapping between two networks
and their density, we sample two sub-networks from Flickr
for alignment. The density level and overlapping level of
two sub-networks Gs and Gt are controlled by hyper-
parameters δs (the larger the denser) and δc (the larger the
more overlapping) respectively.

We perform the following procedure in line with [22],
to generate Gs, Gt satisfying the probability constraints by
Eq. 34: 1) For each edge in the raw network G, generate
a random value r with the uniform distribution in [0, 1].
2-a) If r ≤ 1 − 2δs + δsδt, the edge is discarded; 2-b) If
1−2δs+ δsδt < r ≤ 1− δs, the edge is preserved in Gs; 2-c)
If ≤ 1− δs < r ≤ 1− δsδc, the edge is preserved in Gt; 2-d)
Otherwise, it is preserved in both Gs and Gt. Through this
sampling procedure, we are able to ensure that:

p(edge ∈ Gs|edge ∈ G) = p(edge ∈ Gt|edge ∈ G) = δs

p(edge ∈ Gt|edge ∈ Gs) = p(edge ∈ Gs|edge ∈ Gt) = δc.
(34)

We compare three kinds of baselines: 1) Single-network
embedding methods within our framework; 2) State-of-the-
art network alignment approaches that accept similar input
(seed matchings) and output a score matrix; 3) Our cross-
network embedding approach (with handcrafted features).
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Fig. 10: BTVec consistently outperforms on single network reconstruction across different datasets.

Variants under Vec4Cross framework. We com-
pare three single-network embedding methods under the
Vec4Cross framework, namely dw-Cross (for DeepWalk),
n2v-Cross (for node2vec), and BTCross (for BTVec). They
are all trained without extended features. For dw-Cross and
n2v-Cross, we set f(u) ≡ f(v) when nodes u and v are
matched, as a simplified alternative.

Network alignment methods. We compare with sev-
eral existing network alignment algorithms including FI-
NAL [43]9, IsoRank [44], and REGAL [33]10. For FINAL
and IsoRank, we input seed matchings as prior alignment
knowledge and output an alignment matrix for evaluation.
For REGAL, we use seed matchings as node attributes, and
evaluate embedding similarity by cosine similarity (Eq. 28).
Specifically, FINAL introduces a family of algorithms opti-
mizing quadratic objective functions while IsoRank solves
a version of the integer quadratic program with relaxed
constraints. The prior alignment information is input in the
form of a matrix H. For our partial alignment settings, we
generate H by the following process: For each node pair
(vsi , v

t
j), a) if they are matched, then Hi,j = 1; b) if one

of them is matched with some other node, then Hi,j = 0;
c) otherwise, Hi,j is set to the expectation of probability
that they will be matched, i.e. Hi,j = |UT |

(|Vs|−|T |)×(|Vt|−|T |) ,
where UT denotes the set of unknown node matching and
T denotes set of existing matching seeds known as prior.
Similarly, H serves as attribute inputs for REGAL.

BTCross with extended features. The version of
BTCross with additional handcrafted features is termed by
BTCross+. See Sec. 4.2.3 for details.

We use standard P@N for node matching [21], [31], [32]:

P@N =
∣∣∣Success(v)@N |v ∈ VUT

∣∣∣/|VUT | (35)

where
∣∣Success(v)@N |v ∈ VUT

∣∣ is the number of nodes
which can find the correct match in top-N choices. Here
VUT is set of nodes in all of the ground-truth matching.

For hyperparameters of IsoRank and FINAL, we set α =
0.82, maxiter = 30, tol = 1e − 4. The parameters of dw-
Cross and n2v-Cross are the same as those in single-network
tasks. For BTCross and BTCross+, see parameters in Table 7.

9. Both FINAL and IsoRank: https://github.com/maffia92/FINAL-
network-alignment-KDD16

10. https://github.com/Allen517/alp-baselines

TABLE 7: Parameter settings for cross-network alignment.

α β γ w Nw K Nm Np

Fb-Tt 0.08 1.0 0.07 0.2
3e8 2 2 200Db-Wb 0.005 2.0 0.9 0.2

Flickr 0.075 2.0 0.9 0.2

5.2.2 Results on Network Alignment

Performance on real-world data. We use Facebook-Twitter
(Fb-Tt) and Douban-Weibo (Db-Wb). We evaluate the meth-
ods with 10%/50% ground-truth matchings as seed match-
ings, where the seeds for the smaller ratio is a subset of a
larger one. The results in Fig. 11 show that BTCross outper-
forms baselines mostly. We provide analysis as follows:

1) For alignment over both dense networks (Db-Wb) and
sparse networks (Fb-Tt), methods within Vec4Cross give a
stable performance. While in contrast, FINAL and IsoRank
perform worse on Db-Fb which is several times denser than
Fb-Tt, suggesting they do not adapt well to dense networks.
And REGAL does not show good performance over both of
the real-world datasets. It proves the stability of Vec4Cross
framework over networks with different levels of density.

2) For all methods, accuracy grows as the number of
seed matchings increases. Among the family of Vec4Cross,
our BTCross keeps its superior advantages consistently, es-
pecially when the portion of seed matchings is small (10%),
showing its robustness for challenging cases.

Performance on simulated data. To verify the conclusion
above, we further study on the controlled synthetic Flickr
datasets. We first vary the density level δs as 0.1/0.4 while
fixing overlapping level δc = 0.3, which is a common value
in real-world condition according to Table 6. Then we fix
δs = 0.15, which guarantees the nodes in networks with a
proper degree, and set δc as 0.1/0.4. We randomly sample
30% from ground truth alignments as seeds. We analyze the
results in Fig. 12 as follows:

1) As shown in Fig. 12(a),(b), it becomes more chal-
lenging as the networks turn denser. The Vec4Cross family
outperforms FINAL and IsoRank consistently by a notable
margin especially on denser networks. RGEAL shows good
capacity when the network goes denser compared to other
methods. These results further verify the conclusion made
in the above experiments that FINAL and IsoRank suit
sparse networks better compared with dense ones, while
the Vec4Cross family works well for both.
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Fig. 11: Performance of network alignment on two real-world datasets Facebook-Twitter (Fb-Tt) and Douban-Weibo (Db-
wb). Our proposed cross-network embedding method outperforms baselines in most cases.
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Fig. 12: Performance of network alignment on Flickr. δs describes the density level of the two synthetic networks and δc
indicates the overlapping level between them. Our proposed BTCross outperforms the baselines mostly.

2) From Fig. 12(c),(d), we can observe that a higher
overlapping level between networks makes the alignment
task easier for most baselines. However, compared with
others, REGAL works relatively better under a lower over-
lapping level. For BTCross, its P@N keeps more than 400%
of FINAL’s scores when the overlapping level is very low
(δc = 0.1), and also maintain its supremacy at a high
overlapping level. The results demonstrate the capability of
Vec4Cross for all the overlapping levels.

The above results suggest that our proposed BTCross
works well on networks with a low overlapping ratio and
dense structure, which is common in practice while chal-
lenging. The results also show that methods under our
Vec4Cross framework perform stably whenever networks
are sparse/dense and the overlapping level of the source
network and target network are low/high.

Boosting by EM algorithms. We show how our method
improves basic network alignment methods. Take BTCross+
as an example, we run experiments on Fb-Tt and Db-Wb
with the portion of 10% and 30% ground-truth as seeds.
Fig. 13 shows the convergence process of P@15 over itera-
tions. We provide analysis as follows:

1) In Fig. 13(a), BTCross+ boosts over iterations. The
newly estimated matchings enrich the alignment informa-
tion thus improving the performance significantly even with
a very low portion of alignments (10%). Though the newly
estimated matchings might bring noise (the little drop of
10% seeds at iteration 2 in Fig. 13(a)), as the EM process
continues, it converges to a relatively high performance.

2) Compared with BTCross in Fig. 11, the extended ver-
sion with additional human-defined features i.e. BTCross+
outperforms baselines notably, suggesting the advance of
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Fig. 13: Convergence of BTCross+ on Fb-Tt and Db-Wb.

(a) BTCross+ (b) FINAL (c) BTCross+ (d) FINAL

Fig. 14: Confusion matrix for node matching on Fb-Tt (left
two) and Db-Wb (right two) with 30% portion of ground
truth matchings as seeds. A lighter color indicates a higher
confidence for the corresponding two nodes to be matched.

incorporating additional human-defined features.
Heatmap analysis. We visualize the alignment result by

heatmaps in Fig. 14. We randomly sample 16 pairs of nodes
in ground-truth matching but not included in seed align-
ments, and visualize the pairwise confidence ( BTCross+)
or the probability score (FINAL) that they are aligned after
iterations. From the figure, we can safely claim that our
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(a) Karate networks by BTCross (b) Karate networks by BTVec

Fig. 15: PCA projection for embedding results of cross-
karate networks. Nodes that are linked to each other are
true matching across networks. Different shapes are used to
distinguish seed matching from unknown matchings.
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Fig. 16: Sensitivity w.r.t. weight of non-common-neighbor
penalty γ, and weight of the expectation term, β in M-step.

vec4Cross+ yields a notably better matching result than
FINAL. In Fig. 14(a) and Fig. 14(c), our BTCross+ can ef-
fectively distinguish the ground-truth matchings among all
of the nodes, while FINAL fails in Fig. 14(b) and Fig. 14(d).

Visualization for cross-Karate networks. We use Karate
network [45] and its copy as the target network, and then
conduct the cross-network embedding experiment with 30%
ground truth as seed matchings. The results are visualized
in Fig. 15, for which we give analysis as follows:

1) As shown in Fig. 15(a), seed matchings and unknown
ground truth matchings are divided clearly by the split line,
while BTVec in Fig. 15(b) mixes them together.

2) Our BTCross performs competitively where the
matchings are projected closer than BTVec, proving the
capability of Vec4Cross framework to extend single-network
embedding methods for network alignment.

Parameter Sensitivity. We study the performance of our
proposed cross-network embedding model BTCross+ w.r.t.
some main parameters, γ and β. We fix the other parameters
the same as Table 7. Results are shown in Fig. 16:

1) Best performance is achieved with 0.4 > γ > 0, which
indicates that non-common-neighbor penalty can help mod-
erately improve the alignment performance.

2) With β changing, performance stays quite stable,
which indicates that the hyper-parameter β does not make
big influence on the final matching precision.

5.3 Further Analysis

In this subsection, we do some further analysis on BTVec,
including BTWalk and Laplacian regularizer.

Source analysis for improvement. We analyze the
source of the improved performance by evaluating both the
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Fig. 17: Comparison by using different hops. Top: results
on single-network embedding; Bottom: results on cross-
network embedding. Among the baselines, the uniformed
weighting sets the multi-order weight m(k) = 1 for all the
nodes, while BTWalk sets node-specific weights by Eq. 10.
We compare the uniformed weighting and BTWalk to the
versions with Laplacian regularizer according to Sec. 3.2.

single-network embedding and cross-network embedding
on two real-world datasets, YouTube-Cut and Fb-Tt, for the
tasks of node classification and network alignment respec-
tively. The results are given in Fig. 17. For all the methods,
1e8 random walk sequences are sampled and it runs with
16 threads, with the embedding dimension z = 128. On
YouTube-Cut, we set w = 0.3 for BTWalk and α = 0.1 for
Laplacian regularizer. On Fb-Tt, we set w = 0.2 for BTWalk
and α = 0.01 for Laplacian regularizer.

On single-network embedding, we find that the clas-
sification results of all the methods improve as K grows
larger. Among them, BTVec keeps outperforming the other
baselines. Also, we find that both BTWalk and Laplacian
regularizer have positive effects on the experimental results
compared with uniformed weighting w/o Laplacian reg-
ularizer. And somehow, since BTVec, which can be seen
as a combination of BTWalk and Laplacian regularizer on
skip-gram model, outperforms both BTWalk w/o Laplacian
regularizer and uniformed weighting w/ Laplacian regular-
izer, BTWalk and Laplacian regularizer can have orthogonal
positive effects on the vanilla skip-gram model.

For cross-network embedding, the performance given by
uniformed weighting declines for larger K. That might be
caused by an improper weighting on multi-order proximity
as neighborhoods grow. In comparison, the other three keep
improving and outperforming uniformed weighting as K
grows. It indicates that BTVec and BTWalk are able to deal
with larger and more complex neighborhoods.

Laplacian regularizer on other methods. We conduct
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Fig. 18: Comparison of several skip-gram based single-network embedding methods w/ and w/o Laplacian regularizer.

experiments by adding Laplacian regularizer to several
skip-gram based embedding methods, LINE, node2vec11

and VERSE [11]. We set α = 0.1 for LINE, α = 0.01 for
node2vec and VERSE. LINE is run with sampling number
as 1e8. node2vec is run with window size as 10, p = 1 and
q = 1. VERSE is run with PPR similarity, where damping
factor is set as 0.85. Embedding dimension is set as z = 128.
The results are shown in Fig. 18, where the Macro-F1 scores
on BlogCatalog are given. We find that Laplacian regularizer
can improve the performance.

6 CONCLUSION

We have presented a network embedding approach with
the following highlights: i) a clear weighted multi-order
proximity model fulfilled by a combination of Skip-Gram
probabilistic model and Laplacian Eigenmaps; ii) a fast and
theoretically justified BTWalk technique based on branch-
ing tree-like BFS and DFS sampling; iii) an extension and
adaption to the cross-network setting whereby embedding
and alignment function can be learned jointly end to end.
Experimental results show the efficacy of our approach.
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