
1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3148284, IEEE
Transactions on Knowledge and Data Engineering

1

Learning Regularized Noise Contrastive
Estimation for Robust Network Embedding

Hao Xiong, Junchi Yan Senior Member, IEEE , and Zengfeng Huang

Abstract—Skip-gram models are popular in large-scale network embedding for their cost-effectiveness. The objectives of many
skip-gram based methods relate to the word2vec model which closely relates to Noise Contrastive Estimation (NCE). Among existing
embedding methods, the differences mostly lie in how the node neighborhood is modeled e.g. by different ways of random walk, which
leads to different learning strategies. Orthogonal to these efforts, we take a unified view that the NCE based methods commonly
involve two basic NCE components in the learning objective. This perspective allows a natural generalization of the objectives by taking
different forms of scoring function in the NCE components. We theoretically analyze how the vanilla NCE-based objectives suffer from
the slow convergence speed and challenge in first-/second-order proximity preservation. We also prove the fundamental difficulty for
NCE methods to capture non-linearity of complex networks. To mitigate such issues, we devise a general distance-based term added
to the used NCE term, inspired by its physical meaning. The distance functions include Wasserstein-k distance and
Laplacian/Gaussian kernel functions, with relatively little additional time overhead. The effectiveness of our approach is verified both by
prototype examples as well as real-world datasets, for the task of node classification and network reconstruction.

Index Terms—Network embedding, Noise-contrastive estimation, Score function

F

1 INTRODUCTION AND MOTIVATION

G RAPH-LIKE data is ubiquitous such as social networks,
knowledge graphs, molecule, transaction networks,

etc. Compared with traditional vector-like data as readily
handled by a wide range of existing learning methods for
classification, regression and ranking, graph can be more
complex and one effective way of reusing traditional learn-
ing methods for vector-like data is to embed either node or
even the whole network into vector representation [1], [2].

Network embedding or namely node embedding has
been a hot topic with a line of recent methods, includ-
ing those based on deep learning [3], matrix factoriza-
tion [4], [5], [6], [7], graph neural network [8], [9], and skip-
gram [10], [11], [12], [13], [14], [15], [16], etc.

Among them, skip-gram based methods have received
wide interests for their cost-effectiveness and scalability.
Skip-gram is derived from word embedding in natural
language processing [17], [18], where each word is repre-
sented by an embedding vector through a lookup table.
Its basic idea is to build an embedding model which can
help predict the nearby words for each word in a sentence.
When skip-gram is transferred to network embedding, the
motivation becomes to learn a good node embedding model
that is able to predict a node’s neighbors according to node
embedding [10], [11]. The neighborhood relation probability
is usually modeled by softmax that requires high computa-
tion. As alternatives, hierarchical softmax [17] and negative
sampling based on noise contrastive estimation (NCE) [19]
are two popular techniques to solve the problem. The NCE-

H. Xiong and J. Yan are with Department of Computer Science and Engi-
neering, MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao
Tong University, Shanghai, China. J. Yan is also affiliated with Zhejiang
Lab, Hangzhou, China. Z. Huang is with School of Data Science, Fudan
University, Shanghai, China.
J. Yan is the correspondence author.
E-mail: {taxuexh,yanjunchi}@sjtu.edu.cn, huangzf@fudan.edu.cn

based one is often more welcomed in practice [11], [12], [14],
[20] due to its empirical strong performance.

Specifically, NCE-based embedding models aim to max-
imize the sigmoid of the inner-product between node em-
beddings and hidden embeddings (also a.k.a. context em-
bedding in [11]) for positive samples, while they do the
opposite for negative samples. In each iteration of stochas-
tic gradient descent (SGD), for positive samples, the node
embedding will be added by a little step of the same
direction of the hidden embedding, and so will the hidden
embedding. While for negative samples, the little step will
be in the opposite direction of the hidden embedding. In
this way, the node embedding and hidden embedding will
be moved closer for positive samples while further away for
negative samples. However, as we prove in Theorem 1, the
convergence speed of vanilla NCE can be quite slow.

One of the consensuses of network embedding is that a
good model should preserve proximity between nodes [3],
[11], [21], which is also one of the targets of NCE-based
embedding models [11]. To be more specific, nodes that are
connected (sharing first-order proximity), and nodes that
have common neighbors (sharing second-order proximity)
are expected to have similar embedding. As mentioned in
the last paragraph, NCE-based embedding models achieve
to preserve first-order proximity by moving the embedding
of connected nodes (positive samples) together. We theoret-
ically give the achievable optimal solutions by iterations of
SGD in Theorem 1, by which we find two existing problems
of NCE: 1) For positive samples, NCE tends to make the
embedding vectors longer, but not make them more similar,
which means that the loss of NCE is not suitable enough for
proximity preservation; 2) Gradient vanishing may happen
in the later stage of training, preventing the embeddings
from going more similar. We give a toy example in Fig. 1 to
illustrate how the problems may happen. Moreover, we also

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 10,2022 at 04:27:13 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3148284, IEEE
Transactions on Knowledge and Data Engineering

2

?

the moving trace of
 by vanilla NCEideal

trace

Fig. 1: Illustration of the embedding’s updating behavior.
Here xi and hj are the embedding of node i and hidden
embedding of node j, respectively. In each iteration by NCE,
embedding xi will add a little step that is of the same
direction of hj , resulting in the upper red dashed line. It has
two drawbacks: 1) After some iterations, the convergence
will become extremely hard due to gradient vanishing; 2)
To make xi and hj similar enough, ‖xi‖ will become very
large. In comparison, we ideally hope the moving trace of
the embedding xi should be like the lower red dashed line,
which makes xi and hj similar in a straight way.

clarify that the capability of NCE-based embedding models
to preserve second-order proximity is only guaranteed with
enough neighbors.

Apart from the problems in proximity preserving, we
will show in Theorem 3 that a specific type of NCE (re-
ferred as NCE-h in the following paper) is more likely to
embed nodes in a linear distribution. However, real-world
networks are usually of high non-linearity [22]. That makes
it very hard to express complex network structures for the
NCE-based embedding methods.

The finding inspires us to try to solve the above-
mentioned problems by adding some other more advanced
distance functions to the loss of vanilla NCE, such as the
advanced Wasserstein-k distance and Gaussian/Laplacian
kernel functions. The hope is to better maintain the structure
and community property after embedding by more effective
distance modeling. This idea is orthogonal to the majority
of existing skip-gram methods that are exploring different
techniques for neighborhood design while keeping the ob-
jective unchanged. In fact, a more wide neighborhood can
usually improve the performance at the cost of quite more
computational overhead.

In a nutshell, the highlight of this paper are as follows:
1) We take a Noise Contrastive Estimation perspective

on the majority of skip-gram based models and formally
identify two building blocks Ohnce (Eq. 2), Oxnce (Eq. 3)1 used
in the objectives (see Table 1). Orthogonal to the efforts
on neighborhood modeling instead of objective re-design
as mostly done by the previous methods [12], [13], this
perspective allows us to generalize the two basic compo-
nents which can be readily applied to existing embedding
methods.

2) We theoretically study the NCE objective, including
analyzing its convergence speed and the achievable opti-
mal solutions, analyzing its capability to preserve nodes’
proximity, and the special linearity caused by the negative
samples. Based on the observation, we propose to add

1. Ox
nce means the objective only contains node embeddings while

Oh
nce indicates an additional utilization of hidden embeddings.

TABLE 1: Noise Contrastive Estimation perspective on skip-
gram based network embedding methods. The two vanilla
NCE components Ohnce (Eq. 2), Oxnce (Eq. 3) both consist of
an inner product based score term for positive samples plus
a noise term for negative ones. They serve as building blocks
for the listed embedding methods and can be generalized
by a function F . This paper sets F (X) = (X + dist) which
is motivated for effective gradient descent updating beyond
the inner product loss, where dist is a distance function. The
bottom two vanilla ones will also be studied in the paper.

Methods Objective Obj. w/ dist. Neighbor

LINE-1st [11] Ox
nce F (Ox

nce) direct
LINE-2nd [11] Oh

nce F (Oh
nce) direct

node2vec [12] Oh
nce F (Oh

nce) biased RW
struc2vec [13] Oh

nce F (Oh
nce) structural RW

VERSE [14] Ox
nce F (Ox

nce) PPR

Notation: PPR: Personalized PageRank. Biased random walk uses
two parameters to perform breadth-/depth-first search

simultaneously. Structural random walk refers to random walk
according to nodes’ structural similarity. Direct neighbor in this

paper indicates the plainest case that only nodes with 1-hop edges are
possible positive samples by sampling.

distance terms who have a common form of gradients to
the objective. The approach is also theoretically proved to
bear a few nice abilities, including faster convergence speed,
stronger ability to preserve nodes’ proximity, and better
expressiveness on non-linear structures of networks.

3) Experimental results show the improved performance
by adding the distance term to existing NCE-based methods
over different tasks significantly. By our techniques, even
the simplest NCE-based embedding i.e. based on the vanilla
Ohnce, O

x
nce with only direct neighbors can outperform most

state-of-the-art methods such as [6], [14] given in Table 1.

2 RELATED WORK

Existing works can be divided into NCE-based, matrix
factorization-based, and deep network-based ones.

NCE-based network embedding. Many recent popular
embedding methods relate to the idea of negative sampling
(early use in word2vec [17]) for more efficient learning in
place of the intractable softmax for large-scale networks.
Negative sampling can be regarded as a simplified version
of Noise Contrastive Estimation (NCE), which is first pro-
posed in [19] and later used in neural probabilistic language
models [23]. In general, the NCE model aims to distinguish
the positive samples from background noise.

We show that many skip-gram embedding models are
essentially based on NCE. For instance, though in the
original paper, DeepWalk [10] models the random-walk se-
quence by hierarchical softmax, it in fact can also be replaced
by negative sampling. The uniform random-walk preserves
both local and global structure. On this basis, node2vec [12]
introduces biased second-order random-walk to preserve
both breadth-first and depth-first structure. It adopts Ohnce
(see Eq. 2) as the objective. LINE [11] proposes to model
first-order proximity by KL-divergence whose objective is
Oxnce (see Eq. 3) and model second-order proximity by Ohnce.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 10,2022 at 04:27:13 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3148284, IEEE
Transactions on Knowledge and Data Engineering

3

TABLE 2: Comparison between RNS [24] and our approach.
The motivations, analysis and the approaches are very dif-
ferent and mostly orthogonal to each other.

RNS (Robust Negative Sampling) Ours (Regularized NCE Embedding)

Motivation limitations caused by
popular neighbor problems

defects in proximity preservation;
limitation of linearly distributed

embeddings (NCE-h)

;

Theoretical
Analysis

optimal solutions of skip-gram
objectives; optimal solutions of

skip-gram objectives by
negative sampling;

optimal solutions by SGD iterations;
convergence speed by SGD iterations;

capability to preserve proximity;
high linearity of NCE-h embeddings;

Approach an adaptive negative sampler; distance regularizers over
positive node pairsembedding normalization;

Input undirected & unweighted networks directed & weighted networks;
node sequences;

It only considers 1-hop neighbors while it also yields im-
pressive performance. struc2vec [13] introduces structural
random-walk, which adds nodes with similar structure to
neighborhoods to preserve structural identity information.
It feeds the random-walk sequences into node2vec to learn
node embedding. Recently, VERSE [14] proposes to instanti-
ate proximity functions (e.g. Personalized PageRank) and
models the proximities by KL-divergence similar to [11].
Specifically, it adopts Oxnce as its objective. Hence one can
find existing methods mainly differ in how the neighbor is
expanded while the objectives are similar (see Table 1).

Recently, it is pointed out [24] that skip-gram embedding
by negative sampling suffers from the so-called ‘Popular
Neighbor Problem’ which may cause poor performance
for embedding of high degree nodes and preservation of
first-order proximity. While the technique by RNS [24] is
relatively trivial: tuning the embedding penalty and the
adaptive negative sampler, which cannot guarantee an effec-
tive solution. Moreover, due to its unweighted/undirected
design, RNS has difficulties in applying other advanced
embedding methods that are based on node sequences such
as [10], [12], [13]. The main differences between RNS and
this paper are listed in Table 2.

Matrix factorization-based network embedding. The
authors in [7], [25] treat the network embedding task
as sparse matrix factorization and [25] proposes to unify
a number of shallow models within a matrix factoriza-
tion framework. HOPE [4] preserves high-order proxim-
ity as well as asymmetric transitivity in directed network.
AROPE [5] models arbitrary-order proximity by SVD. Most
recently, STRAP [26] combines backward push algorithm
and Personalized PageRank (PPR) as its transpose proxim-
ities, and do matrix factorization under the sparsity con-
straints. ProNE [6] adopts a two-stage learning procedure,
where the first step is sparse matrix factorization and the
second is spectral propagation.

Deep learning-based network embedding. There are
emerging deep network based methods e.g. SDNE [3],
which has difficulty in dealing with large-scale networks.
GNN-based embedding methods [8] are also loosely related.
They are in general more focused on extracting information
from node attributes, rather than from node structures as
emphasized in network embedding.

3 ANALYSIS TO THE NCE FRAMEWORK

In this section, we theoretically analyze the defects in the
vanilla NCE framework. First, in Sec. 3.1, we give basic

TABLE 3: Main notations and description used in this paper.

General parameters
G = (V, E, w) network where V is vertex set, E is edge

set, and w is edge weight
N number of nodes in network G
Oz

nce(i, j) objective by NCE-based embedding for a
positive sample (i, j)

Pn distribution of negative samples
Lz the loss function of NCE-based embed-

ding
xi, hj node embedding for node i and hidden

embedding for node j
yij inner-product of node i’s node embedding

and node j’s hidden embedding
·(t) a parameter/solution at t-th iteration
·∗ a parameter/solution’s optimal point
p the probability that an edge forms in a

random graph, used in Theorem 3
A1, A2 two defined events, used in Theorem 3

and Remark 2
dini , douti in-/out-degree of node i, used in Lemma 1

and Theorem 3
λdis the weight of xi − hj in the gradient by

Oz
dis, a distance-function-specific scalar

variable
Hyper-parameters

d embedding dimension
K number of negative samples for each pos-

itive sample
β weight of the distance term
γ parameter of kernel functions
η learning rate

background on NCE-based network embedding models in-
cluding two forms. Then in Sec. 3.2 and Sec. 3.3, we discuss
the defects from two aspects, proximity preservation and the
limitation of high linearity. Finally in Sec. 3.4, we summarize
the defects and give a general sight of regularized NCE
that is introduced in the next section. The outline of this
section and the following Sec. 4 is shown in Fig. 2. The main
notations in this paper are listed in Table 3.

3.1 Preliminaries for NCE-based Embedding
Define graph G = (V, E , w), where V = {1, 2, . . . , N} is
a set of nodes, E = {(i, j)} is a set of edges, and wij is
the weight of directed edge (i, j). We define (i, j) ‘positive’
when wij > 0. Also, note that wij does not have to indicate
the connection strengths. It can be re-defined by external al-
gorithms (such as PPR, second-order transition probability,
etc., as listed in Table 1). By NCE-based embedding, each
node i has node embedding xi and hidden embedding hi
(xi,hi ∈ R

d). To predict node j by the context node i,
the probability P (j|i) is usually defined in softmax as the
following equation, where s(j|i) is usually instantiated as
inner-product x>i hj [11], [14]:

P (j|i) = exp(s(j|i))∑N
j′=1 exp(s(j

′|i))
.

Since the full softmax can be intractable for large-scale
networks, Noise Contrastive Estimation (NCE) is adopted
as an alternative, which aims to distinguish positive data
samples from the noise. On the one hand, NCE treats the
normalization constants in the softmax as parameters. On
the other hand, NCE reduces the number of noise samples

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 10,2022 at 04:27:13 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3148284, IEEE
Transactions on Knowledge and Data Engineering

4

Sec. 3.2.1 Convergence
Analysis for Vanilla NCE

Sec. 3 Analysis to Vanilla
NCE Framework

Sec. 3.1
Preliminaries

Sec. 3.2 Proximity
Preservation (in positive
samples)

Sec. 3.3 Limitation of Linear Representation
(in negative samples)

Sec. 4 Proposed Regularized
NCE Embedding

Sec. 3.2.2 Defects in
Preserving First-order
Proximity

Sec. 3.2.3 Defects in
Preserving Second-order
Proximity

Sec. 4.2.1 Convergence Analysis for
Regularized NCE

Sec. 4.2.2 Improved First-order Proximity
Preservation

Sec. 4.2.5 Improvement on Label
Smoothing

Sec. 3.4
Towards

Regularized
NCE-based
Embedding

* indirect objective for
first-order proximity
* gradient vanishing

* faster, Theorem 4,5
* does not affect the final solutions, Remark 1

* convergence point and
convergence speed,
Theorem 1

* Lemma 1, Theorem 3
* difficult to express non-linearity of networks

* explicitly preserve proximity
* relieve the problem of gradient vanishing

* guaranteed proximity does good to label
smoothing

Sec. 4.2.3 Improved Second-order
Proximity Preservation

* guaranteed by the applied distance functions

Sec. 4.2.4 Nonlinearize the Embedding
Distribution of NCE-h

* better at preserving the non-linearity of
networks, Remark 2

Sec. 4.1
Distance
Functions

Sec. 4.2
Properties

Sec. 4.3
Optimization* the optimal solution of

NCE objective, Theorem 2
* only guaranteed given
enough neighbors

Sec. 4.2.5 Property Summary and Further
Discussion

Fig. 2: The outline of the main parts of this paper. In Sec. 3, we discuss the possible defects of the NCE framework in two
aspects: proximity preservation in Sec. 3.2 and limited expressiveness of linear embedding in Sec. 3.3. In Sec. 4, we propose
the regularized NCE by adding a distance term to vanilla NCE whose properties are analyzed in Sec. 4.2.

to K. Denote the modified conditional probability as P̃ (j|i),
then the objective for (i, j) given by NCE is defined as :

O(i, j) = − log P̃ (j|i)−KEj′∼Pn log(1− P̃ (j′|i))︸ ︷︷ ︸
noise modeling

, (1)

where Pn is the context-independent noise distribution.
word2vec simplifies the conditional probability as P̃ (j|i) =
σ(x>i hj), and proposes negative sampling to optimize the
objective which finally becomes Eq. 2 [17]. In advanced
NCE-based network embedding methods, a positive data
sample can be a pair of connected nodes by edge in E [11],
or a positive node pair in node sequences [12], or generated
by specific algorithms [14]. For a positive sample (i, j),
negative sampling breaks the connection and substitutes
node j with a negative node j′ generated byPn. When (i, j)
is sampled as a positive node pair and (i, j′) as negative
ones, the objective consists of a score function term for the
positive sample, plus a noise modeling term for negative
samples, which is defined as [11]:

Ohnce(i, j) = − log σ(x>i hj)︸ ︷︷ ︸
score function for
positive sample

−
K∑
k=1

Ej′∼Pn
log σ(−x>i hj′)︸ ︷︷ ︸

noise modeling for negative samples

,

(2)
where the score function term usually uses a sigmoid func-
tion σ(x) = 1/(1 + exp(−x)). When hidden embedding h
is set the same as node embedding x, the objective becomes
Eq. 3. It is derived from KL-divergence [11] and shares a
similar NCE-based form with Eq. 2. It helps preserve first-
order proximity when direct neighbors connected by edges
are considered (LINE-1st [11]). In the following parts of the
paper, we name Eq. 2 as NCE-h and Eq. 3 as NCE-x.

Oxnce(i, j) = − log σ(x>i xj)−
K∑
k=1

Ej′∼Pn log σ(−x>i xj′).

(3)

Then the loss of NCE-based embedding is defined as:

Lz =
N∑
i=1

N∑
j=1

wijO
z
nce(i, j), z ∈ {x, h}. (4)

Hence the optimization objective is to find the embed-
ding that minimize the loss Lz :

min
{xi,hi|i∈V}

Lz. (5)

Recall in Table 1, the two terms, Eq. 2 and Eq. 3, serve
as building blocks in lots of skip-gram based embedding
methods.

Gradient analysis. We then analyze the gradients for
objectives Eq. 2 and Eq. 3. Suppose label = 1 for positive
samples and label = 0 otherwise, then the gradient of the
updated embedding xi is:

∂Oznce(i, j)

∂xi
=

(
σ(x>i hj)− label

)
hj z = h(

σ(x>i xj)− label
)
xj z = x, i 6= j

2
(
σ(x>i xi)− label

)
xi z = x, i = j

.

(6)

3.2 Proximity Preservation of NCE-based Embedding
In the embedding space, nodes’ proximity is measured by
the similarity between embeddings. In this part, we give
a detailed retrospection over the capability of NCE-based
embedding models to preserve nodes’ proximity. We first
analyze the convergence in Sec. 3.2.1, then the first-/second-
order proximity preservation in Sec. 3.2.2 and Sec. 3.2.3. We
see that the gradients of Ohnce and Oxnce share a similar form
(Eq. 6). So in general, we provide analysis mainly for Ohnce
in the following parts of this paper.

3.2.1 Convergence Analysis
We theoretically show the convergence of NCE-based model
in the following Theorem 1, by analyzing the SGD iterations
over a single positive sample. We find that the vanilla
NCE-based embedding models can hardly converge at the

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 10,2022 at 04:27:13 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3148284, IEEE
Transactions on Knowledge and Data Engineering

5

optimal solution by SGD. Specifically, we take (i, j) as the
positive sample, over which SGD iterations over the embed-
ding xi and hj are conducted. After infinite iterations, the
length of xi and hj will grow to infinity, and the distance
‖xi − hj‖ will decay to zero. Moreover, both of xi and hj
will converge at the direction of x(0)

i + h
(0)
j . However, the

convergence speed is very slow (Eq. 9, Eq. 11), making the
theoretically optimal solution ‖xi − hj‖ = 0 unreachable.

Theorem 1. (For both NCE-h/x) Given an edge (i, j), we
update the embedding of nodes i and j based on the NCE objective
(Eq. 2 for NCE-h and Eq. 3 for NCE-x), taking (i, j) as the
positive sample and neglecting negative samples. Specifically, by
the gradients given in Eq. 6, the updating rules are as the follows:

x
(t+1)
i ← x

(t)
i + ησ

(
− x

(t)>
i h

(t)
j

)
h
(t)
j ,

h
(t+1)
j ← h

(t)
j + ησ

(
− x

(t)>
i h

(t)
j

)
x
(t)
i ,

(7)

where the superscript (t) denotes the time step, η is the learning
rate. Supposing that embeddings x(0)

i and h
(0)
j is initialized with

random values by Gaussian distribution, we have the following
properties:

Property 1. The limit of x(t)>
i h

(t)
j is:

lim
t→∞

x
(t)>
i h

(t)
j = +∞. (8)

Property 2. The increasing speed of x(t)>
i h

(t)
j follows:∫ x

(t)>
i h

(t)
j

x
(0)>
i h

(0)
j

d(x>i hj)

σ(−x>i hj)x>i hj
∼
∫ η(t)

η(0)
dη. (9)

Property 3. The limit of ‖x(t)
i − h

(t)
j ‖ is:

lim
t→∞

‖x(t)
i − h

(t)
j ‖ = 0. (10)

Property 4. The decaying speed of ‖x(t)
i − h

(t)
j ‖2:∫ ‖x(t)

i −h
(t)
j ‖

2

‖x(0)
i −h

(0)
j ‖2

d(‖xi − hj‖2)
‖xi − hj‖2σ(−x>i hj)

∼ −
∫ η(t)

η(0)
dη. (11)

Property 5. The limits of normalized embeddings are:

lim
t→∞

x
(t)
i

‖x(t)
i ‖

= lim
t→∞

h
(t)
j

‖h(t)
j ‖

=
x
(0)
i + h

(0)
j

‖x(0)
i + h

(0)
j ‖

. (12)

Proof. We prove the five properties as the follows:
Proof for Property 1. Considering that the learning rate

η → 0, we write the updating rules Eq. 7 in the differential
form:

dxi = σ(−x>i hj)hjdη,
dhj = σ(−x>i hj)xidη,

where dη denotes the learning step. We define yij = x>i hj ,
then we have:

dyij = h>j dxi + x>i dhj

= σ(−yij)(h>j hj + x>i xi)dη

≥ 2σ(−yij)yijdη.
(13)

After some transformation and do integration, we have:∫ y
(t)
ij

y
(0)
ij

1

yijσ(−yij)
dyij > 2

∫ η(t)

η(0)
dη.

Since the right part is going to infinity, the left part will
also go to the positive infinity, and so will yij . Here we end
the proof of Property 1 by Eq. 8.

Proof for Property 2. From the updating rules in Eq. 7,
we can obtain:

x
(t+1)
i − h

(t+1)
j =

(
1− ησ(−x(t)>

i h
(t)
j)
)
(x

(t)
i − h

(t)
j),

so ‖x(t)
i − h

(t)
j ‖ is a monotonically decreasing sequence.

Since ‖x(t)
i − h

(t)
j ‖ > 0, the limit of ‖xi − hj‖ must exist.

So, after enough steps, the following inequality will hold:

h>j hj + x>i xi = ‖xi − hj‖2 + 2x>i hj < 3x>i hj . (14)

Then by Eq. 13, we have:

2dη ≤ 1

yijσ(−yij)
dyij < 3dη. (15)

After integration and omitting the constant term, we will
reach Property 2 by Eq. 9.

Proof for Property 3. We have proved that the limit of
‖xi−hj‖2 exists in the proof above, then we prove that this
limit is zero. Based on Eq. 13, we have:

d(‖xi − hj‖2) = 2x>i dxi − 2d(x>i hj) + 2h>j dhj

= −2σ(−x>i hj)‖xi − hj‖2dη

= −2 ‖xi − hj‖2

x>i xi + h>j hj
d(x>i hj).

(16)

Then combining Eq. 14, after enough training steps, we
will have:

− 1

yij
dyij ≤

1

‖xi − hj‖2
d
(
‖xi − hj‖2

)
< − 2

3yij
dyij .

After integration, we have:

ln
y
(0)
ij

yij
≤ ln

‖xi − hj‖2

‖x(0)
i − h

(0)
j ‖2

<
2

3
ln
y
(0)
ij

yij
. (17)

Since we have proved that limt→∞ y
(t)
ij = +∞ in the

proof for Property 1, based on Eq. 17 and Squeeze Theorem,
we can prove Property 3 by Eq. 10.

Proof for Property 4. Do integration over the second line
of Eq. 16, we can reach the conclusion, Eq. 11.

Proof for Property 5. From Eq. 7, we have:

x
(t+1)
i + h

(t+1)
j =

(
1 + ησ(−x(t)>

i h
(t)
j)
)
(x

(t)
i + h

(t)
j).

Based on Property 3, Eq. 10, we have the limit of the
normalized embedding for x(t)

i :

lim
t→∞

x
(t)
i

‖x(t)
i ‖

= lim
t→∞

(x
(t)
i + h

(t)
j) + (x

(t)
i − h

(t)
j)

‖(x(t)
i + h

(t)
j) + (x

(t)
i − h

(t)
j)‖

= lim
t→∞

x
(t)
i + h

(t)
j

‖x(t)
i + h

(t)
j ‖

=
x
(0)
i + h

(0)
j

‖x(0)
i + h

(0)
j ‖

.

Also, limt→∞ h
(t)
j /‖h(t)

j ‖ can be proved in the same way.
So far we have finished all the proof.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 10,2022 at 04:27:13 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3148284, IEEE
Transactions on Knowledge and Data Engineering

6

Comments on Theorem 1. Theorem 1 shows the proper-
ties of the convergence of the NCE-based embedding mod-
els, and indicates that the minimization of ‖xi − hj‖ can be
achieved by maximizing σ(x>i hj). However, it only holds in
ideal situations, i.e. i) the learning rate η is tiny enough, ii)
the number of iterations is infinite, iii) the embedding xi and
hj will not be affected by other embeddings, and iv) node j
will not be sampled as a negative node for i. In real-world
applications, the case would usually be x>i hj � ∞ and
‖xi − hj‖ � 0, both far from their convergence points. By
vanilla NCE-based embedding, proximity between nodes
can hardly be preserved as shown by detailed analysis in
the following Sec. 3.2.2 and Sec. 3.2.3.

3.2.2 Defects in the First-order Proximity Preservation
First-order proximity describes connection strengths be-
tween nodes. wij > 0 indicates the first-order proximity
between nodes i and j. To preserve the first-order proximity,
nodes whose connection strength wij > 0 are expected
to have similar xi and hj (hj for NCE-h, xj for NCE-
x). However, we find that NCE may have difficulties to
preserve the first-order proximity.

The most influential factor bringing the difficulties is
the convergence speed. As proved by Theorem 1, the con-
vergence speed of ‖xi − hj‖ is very slow. Actually, by
Eq. 6, the gradient of xi is ∂Ohnce(i, j)/∂xi = σ(−x>i hj)hj .
When x>i hj is quite large, σ(−x>i hj) becomes very small,
leading to gradient vanishing before convergence. Hence,
though the optimal solutions exist, they can hardly be
reached within limited number of training iterations. One
can see Fig. 6 which visualizes the updating trace of node
embeddings of a positive pair and experimentally shows the
difficulties to preserve the first-order proximity.

3.2.3 Defects in the Second-order Proximity Preservation
Second-order proximity indicates the similarity of nodes’
neighborhoods. The more common neighbors between two
nodes, the more similar they are by second-order prox-
imity. Both NCE-h and NCE-x are able to yield similar
node embedding for nodes sharing second-order proximity,
however, only with enough neighbors.

To start with, we explore the optimal solution of the NCE
objective Eq. 5 in Theorem 2. Similar proof can also be found
in previous works [24], [25], [27].

Theorem 2. Define yij := x>i hj for NCE-h and yij := x>i xj
for NCE-x. For the positive node pairs (i, j), the optimal solution
y∗ij is:

For NCE-h, it is:

y∗ij = log
wij

KPn(j)douti

, (18)

For NCE-x, it is:

y∗ij = log
wij + wji

K
(
Pn(j)douti +Pn(i)doutj

) . (19)

where douti =
∑N
j′=1 wij′ is the out-degree of node i.

Proof. To start with, we calculate the partial derivative of the
loss Lh/xnce with respect to yij :

∂Lh

∂yij
= −wijσ(−yij) +KPn(j)d

out
i σ(yij), (20)

a) the second-order
proximity between i1 and i2

is roughly preserved

hyperplane-1

hyperplane-2

hyperplane-3
hyperplane-4

b) the second-order proximity
between i1 and i2 is
precisely preserved

Fig. 3: A 2-D illustration of second-order proximity preser-
vation by vanilla NCE-based embedding model. The dashed
lines are the hyperplanes. a) nodes i1 and i2 have one com-
mon neighbor j1. We can see that the distance ‖xi1 − xi2‖
is not fixed since xi1 can be located at any position
on hyperplane-1 and so does xi2 on hyperplane-2. Since
‖xi1 − xi2‖ is not guaranteed while the distance of the two
hyperplanes are determined, we can say that in this case the
second-order proximity is ‘roughly’ preserved. b) nodes i1
and i2 have two common neighbors j1 and j2. We can see
that xi1 is located at the intersection of the two hyperplanes
and so does xi2 . In this way, the distance ‖xi1 − xi2‖ is
determined. And we say that the second-order proximity is
hence ‘precisely’ preserved. By the two examples, we can
claim that for a d-dimensional embedding problem, only
with no less than d common neighbors can the second-order
proximity between two nodes be ‘precisely’ preserved.

and
∂Lx

∂yij
=− (wij + wij)σ(−yij)

+
(
Pn(j)d

out
i +Pn(i)d

out
j

)
Kσ(yij).

(21)

By setting ∂Lx/∂yij and ∂Lh/∂yij to zero, we will reach
the optimal solution (denoted with ∗).

Then, we take NCE-h as the example to explain how
vanilla NCE objectives may fail in preserving nodes’ second-
order proximity in networks, and the analysis for NCE-x
is also similar. According to Theorem 2, we can find that
each hidden embedding hj defines a class of hyperplanes
sharing a common normal vector hj . If node i connects
with node j, the embedding xi will be located on the
hyperplane x>h∗j = y∗ij . When the two nodes i1 and i2
have a common neighbor j, their embedding xi1 and xi2
are very likely to fall in the same hyperspace x>h∗j > 0
since the value of wij

KPn(j)dout
i

is mostly larger than 1 (for
a brief explanation here: since 1/Pn(j) ∼ |V|, the number
of nodes in the whole network, and douti /wij ∼ |N out(i)|,
the number of neighbors of node i, and |N out(i)| � |V| in
most cases in a large network, we can intuitively assume
that the term wij

KPn(j)dout
i

is mostly larger than 1 and the
logarithm is larger than 0). In this way, the second-order
proximity can be roughly preserved, however, still far from
precisely. Specifically, we can see that only with more than d
neighbors (d is the embedding dimension), the embedding
of a node can be determined. Otherwise, the embedding

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 10,2022 at 04:27:13 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3148284, IEEE
Transactions on Knowledge and Data Engineering

7

can be randomly located anywhere on the intersection of
the hyperplanes defined by its neighbors. It also means that
the distance ‖xi1 − xi2‖ between i1 and i2 can only be
guaranteed when both nodes i1 and i2 have at least common
d neighbors. To see this, we give an toy example for d = 2
in Fig. 3. The analysis suggests that the capability of vanilla
NCE-based embedding to preserve second-order proximity
is somehow limited.

3.3 The Limitation of High Linearity of NCE-h

In this part, we will show that the vanilla NCE-h based em-
bedding tends to yield node embeddings in a linear distribu-
tion, mainly by analysis over negative samples (background
noise in NCE). That causes the whole embedding layout
to become more like lines in the embedding space, filter-
ing the non-linear information of networks. However, the
underlying structure of real-world networks is often highly
nonlinear and hence cannot be accurately approximated by
embeddings distributed linearly [22].

To prove that, we first introduce the following lemma,
which somehow indicates the linearity of node embeddings.

Lemma 1. (For both NCE-h/x) Given a network G =
(V, E , w), V = {1, 2, · · ·N}, ∀j ∈ V , the following formulas
hold for the optimal solutions denoted with superscript ∗. Here we
use 1condition to denote an indicator function which takes value
1 when the condition holds and 0 otherwise. Then:

For NCE-h, we have:
N∑
i=1

1wij=0d
out
i σ(y∗ij)x

∗
i = 0. (22)

For NCE-x, we have:
N∑
i=1

1wijwji=0

(
Pn(j)d

out
i +Pn(i)d

out
j

)
σ(yij)x

∗
i = 0 (23)

Proof. For NCE-h, by setting ∂Lh/∂hj = 0 where Lh is
defined in Eq. 4, we have:

N∑
i=1

(
wijσ(−y∗ij)−KPn(j)douti σ(y∗ij)

)
x∗i = 0.

Then we put the terms of x∗i where wij > 0 on the left
side and the terms where wij = 0 on the right side:

N∑
i=1

1wij>0

(
wij −

(
wij +KPn(j)d

out
i

)
σ(y∗ij)

)
x∗i

=KPn(j)
N∑
i=1

1wij=0d
out
i σ(y∗ij)x

∗
i .

(24)

Given the optimal solution for yij of positive node pairs
(Eq. 18), we will find the left-hand side of Eq. 24 be zero and
then reach Eq. 22.

For NCE-x, by setting ∂Lx/∂xj = 0 (Lx is defined in
Eq. 4), we obtain:

N∑
i=1

[
(wij + wji)σ(−yij)

−K
(
Pn(j)d

out
i +Pn(i)d

out
j

)
σ(yij)

]
x∗i = 0,

...

Event

Event

Fig. 4: Illustration of eventA1 andA2 in a random graph. By
the two events, we can probably find a node i2, whose em-
bedding xi2 is approximately parallel to i1’s embedding xi1 ,
even when i2 and i1 do not share any obvious proximity.

By combining the optimal solution of yij given in Eq. 19,
we will reach Eq. 23.

Then we will prove the following Theorem 3, which is
based on analysis over random graphs [28]. It further proves
the linear distribution of embedding by vanilla NCE-h.

Theorem 3. (For NCE-h) Assume G = (V, E , w) is a directed
random graph [28] of N nodes where edges are created by a given
probability p. In the optimal solution of Eq. 5, we suppose that
∀ node pair (i, j) s.t. wij = 0, it has σ(y∗ij) ∈ (u − ε, u +
ε) where ε � u, then ∀ node i1 ∈ V , it is possible to find
such a node i2, whose embedding xi2 is almost parallel to i1’s
embedding xi1 . Here ‘almost parallel’ means there exists ξ s.t.
‖xi1−ξxi2‖ is a small value compared with ‖xi1‖ and ‖xi2‖. We
denote the expectation of the number of such nodes i2 as E#i2,
which satisfies the following inequality:

E#i2 ≥
N−1∑
n=2

(
n− 1

N − 1

)
N(N − 1)(N − n)p2N−2n(1− p)2n,

(25)
where

(·
·
)

denotes combination number.

Proof. Given n−1 random nodes {r1, r2, · · · , rn−1} ⊂ V , we
denote the event as A1 that nodes V − {i1, r1, r2, · · · , rn−1}
connect to the same random node j1 ∈ V while nodes
{i1, r1, r2, · · · , rn−1} do not. We plot an illustration of
the event A1 in Fig. 4, where the weights w·j1 between
nodes {i1, r1, r2, · · · , rn−1} and j1 have w·j1 = 0, while
w·j1 between nodes V − {i1, r1, r2, · · · , rn−1} and j1 have
w·j1 > 0. Then we denote an event as A2 that a random
node i2 (i2 6= i1) and the nodes {r1, r2, · · · , rn−1} connect
to another random node j2 (j2 6= j1). We also plot the
illustration of A2 in Fig. 4.

According to Lemma 1, event A1 indicates that:

douti1 σ(y∗i1j1)x
∗
i1 +

n−1∑
k=1

doutrk
σ(y∗rkj1)x

∗
rk

= 0. (26)

Similarly, event A2 indicates that:

douti2 σ(y∗i2j2)x
∗
i2 +

n−1∑
k=1

doutrk
σ(y∗rkj2)x

∗
rk

= 0. (27)

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 10,2022 at 04:27:13 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3148284, IEEE
Transactions on Knowledge and Data Engineering

8

By Eq. 23 and Eq. 27, events A1 and A2 jointly indicate:

douti1 σ(y∗i1j1)x
∗
i1 − d

out
i2 σ(y∗i2j2)x

∗
i2

=
n−1∑
k=1

doutrk
(σ(y∗rkj2)− σ(y

∗
rkj1

))x∗rk .

By triangle inequality, we have:∥∥douti1 σ(y∗i1j1)x
∗
i1 − d

out
i2 σ(y∗i2j2)x

∗
i2

∥∥
≤
n−1∑
k=1

doutrk

(
σ(y∗rkj2)− σ(y

∗
rkj1

)
) ∥∥x∗rk∥∥

<2ε
n−1∑
k=1

doutrk

∥∥x∗rk∥∥ .
In a further step, we have:∥∥∥∥∥x∗i2 − douti1

σ(y∗i1j1)

douti2
σ(y∗i2j2)

x∗i1

∥∥∥∥∥ < 2ε

σ(y∗i2j2)

n−1∑
k=1

doutrk

douti2

∥∥x∗rk∥∥ .
When ε � u, the right part of the inequality above can

be very small. Hence the embedding vector x∗i1 and x∗i2 can
be almost parallel. That means, by event A1 and event A2,
we can actually find a random node i2 whose embedding
xi2 is highly linear to xi1 .

Then we try to figure out the probability of event A1:

P (A1) =

(
1

N

)(
n− 1

N − 1

)
pN−n(1− p)n.

For event A2, We have the conditional probability:

P (A2|A1) =

(
1

N − n

)(
1

N − 1

)
pN−n(1− p)n.

Then we explore the joint probability that the event
A1A2 happens as following:

P (A1A2) = P (A1)P (A2|A1)

=

(
n− 1

N − 1

)
N(N − 1)(N − n)p2N−2n(1− p)2n.

As all the n satisfying 2 ≤ n ≤ N − 1 should be
considered, the expectation of the number of node i2 holds:

E#i2 ≥
N−1∑
n=2

P (A1A2),

which is the same as Eq. 25. Here the proof ends.

Theorem 3 proves that NCE-h is likely to embed nodes
into a linear distribution. Also, it indicates that to reduce
E#i2, one feasible way is to increase p, namely making
networks denser. For example, among existing NCE-h based
embedding methods, DeepWalk [10] uses random walk to
connect nodes within a given number of hops.

3.4 Towards Regularized NCE-based Embedding

In Sec. 3.1, we give the preliminaries for NCE-based em-
bedding. Then, for positive samples, we theoretically show
the convergence speed of NCE and analyze the capability of
NCE-based embedding methods to preserve first-/second-
order proximity between nodes in Sec. 3.2. In a further step,
by analyzing the embeddings of negative samples, we prove
that NCE-h may yield node embedding of high linearity,
thus possibly limiting the expressiveness of non-linearity
of complex real-world networks. In the next section, we
propose to add distance functions to NCE-based meth-
ods. Specifically, in Sec. 4.2, we elaborate on how distance
functions improve the properties of vanilla NCE-based em-
bedding from several aspects, especially overcoming the
mentioned defects of NCE-based embedding.

4 PROPOSED REGULARIZED NCE EMBEDDING
WITH DISTANCE FUNCTIONS

Several drawbacks of vanilla NCE-based embedding mod-
els are mentioned in the last section. One of the core
problems is that the distances between connected nodes
are not guaranteed. To improve the NCE-based embedding
objective, we propose to add distance functions in the loss
Lz . In the rest of this section, we describe the derived
models by adding a distance functionOhD to Eq. 2, and leave
those for Eq. 3 in appendix. In fact, the distance forms and
the resulting models vary slightly.

Objective. We first define the distribution of nodes. The
distribution of nodes being sampled for node embedding
is denoted as Px, and nodes being sampled for hidden
embedding as P

h. The joint distribution is defined as
P

(x,h). We use P x, Ph : V → R to denote the probabil-
ity that nodes are sampled for node/hidden embedding.
P (x,h) : V × V → R denotes the joint probability that
two nodes are sampled as a positive node pair. Empirically,
we have P x(i) = douti /

∑N
j=1 d

out
j , Ph(i) = dini /

∑N
j=1 d

in
j ,

and P (x,h)(i, j) = wij/
∑N
k=1 d

out
k . The introduced dis-

tance function for NCE-z based embedding is denoted as
Ozdis : V × V → R.

Then we modify the optimization problem of vanilla
NCE-based embedding methods (recall the loss Lz in Eq. 4,
Sec. 3.1) to a constrained optimization problem as follows:

min
{xi,hi|i∈V}

Lz s.t. E(i,j)∼P(x,h)Ozdis(i, j) < Cdis, (28)

by which we hope that the expectation of the distance be-
tween connected nodes is a constant Cdis. With a Lagrange
multiplier β, the final objective is defined as:

min
{xi,hi|i∈V}

Lz + β
∑
i,j

P (x,h)(i, j) (Ozdis(i, j)− Cdis) ,

which is equivalent to:

min
{xi,hi|i∈V}

Lz + β
∑
i,j

P (x,h)(i, j)Ozdis(i, j). (29)

The Lagrange multiplier β controls how heavily the
NCE-based embedding depends on the distance Ozdis(i, j).

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 10,2022 at 04:27:13 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3148284, IEEE
Transactions on Knowledge and Data Engineering

9

Fig. 5: Comparison of different distance functions used in
the NCE-h methods. Note the curve trends are similar in
NCE-x cases which are omitted here. A larger value of x-
axis means that xi and hj are far away in embedding space.
It usually happens in the early training stage. A larger value
of λdis means a larger weight on term (xi−hj) in gradients.

4.1 Distance Functions
We discuss several interesting and popular distance func-
tions, which will be evaluated in experiments.

Elastic Potential Energy (Wasserstein-2). Given a
stretched spring with stiffness coefficient kstf between node
i at point xi and j at hj , to minimize the elastic potential
energy of the physical system, the objective for each positive
sample (i, j) is given by:

Ohdis(i, j) =
1

2
kstf‖xi − hj‖2.

Wasserstein-k Distance. With determined joint distri-
bution P

(x,h), Wasserstein-k distance [29] is defined as(
E(i,j)∼P(x,h)‖xi−hj‖k

)1/k
. Since it can be very hard to cal-

culate the Wasserstein-k distance for a large network, we use
the k-th power of Wasserstein distance

∑
i,j P

(x,h)(i, j)‖xi−
hj‖k which can be more easily dealt with by sampling. Then
the distance function is defined as:

Ohdis(i, j) = ‖xi − hj‖k.

When k = 2, the objective becomes elastic potential with
kstf = 2. In the following of the paper, we use Wasserstein-
2 to refer to the elastic potential energy and discard the
parameter kstf as it can be expressed by the parameter β.

Gaussian Kernel Function. To make the function yield a
larger value for larger ‖xi − hj‖, we define the distance as:

Ohdis(i, j) = − exp(−γ‖xi − hj‖2)

Laplacian Kernel Function. Similar with the Gaussian
kernel, the distance for Laplacian kernel is defined as:

Ohdis(i, j) = − exp(−γ‖xi − hj‖)

The gradients of distance functions. One of the com-
mon points of the listed distance functions is that the
gradients follow a common form:

∂Ohdis(i, j)

∂hj
= λdis(xi − hj), (30)

where λdis is a distance-function-specific scalar variable.
The main difference of the distance functions lies on the

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0

1

2

3

4

5

iter 1
iter 1e2

iter 1e4
iter 1e6

iter 1e2

iter 1e3
iter 1e4

xi hj

Vanilla
w/ W-3

Fig. 6: The comparison between the updating trace of the
vector xi and hj by vanilla NCE and NCE regularized with
Wasserstein-3 distance. The initial embeddings are x

(0)
i =

(−1, 2)> and h
(0)
j = (1, 2)>. The learning rate of SGD is

0.01. We can see that after 1e4 iterations, regularized NCE
almost converges at ‖xi−hj‖ = 0, while by vanilla NCE, xi
and hj are still somehow far away even after 1e6 iterations.
This figure further strengthens the proposed Theorem 1 and
Theorem 4, which theoretically give the convergence speed
of NCE and regularized NCE respectively.

weight, λdis, they give to (xi − hj) in gradients. In earlier
learning stage, embedding is desired to be updated with
bigger steps. In later stage, besides the decaying effect on
learning rate, it is worth to encourage the gradient itself
also to decay for convergence. Note for the example in
Fig. 5, Wasserstein-3 behaves in this way while Lapla-
cian/Gaussian kernel functions and Wasserstein-1/2 do not.

4.2 Properties of Regularized NCE

In this part, we discuss the properties of NCE-based embed-
ding with distance functions. Compared with the properties
of the vanilla NCE-based embedding models as discussed in
Sec. 3.2 and Sec. 3.3, what we proposed improves the vanilla
NCE-based embedding significantly.

4.2.1 Faster Convergence
We theoretically analyze the convergence speed of regular-
ized NCE in Theorem 4. Compared with the convergence
speed of vanilla NCE in Eq. 11, Theorem 1, we show that
regularized NCE is ideally expected to have faster conver-
gence. Specifically, we use Theorem 4 to theoretically give
the convergence speed of regularized NCE, and Remark 1
to claim that distance functions won’t influence the final
solutions given by vanilla NCE with SGD, and Theorem 5
to prove that under certain constraints, by SGD iterations
regularized NCE will yield faster convergence. Moreover,
in Fig. 6, we give a toy example for the updating trace
of two embedding xi and hj w/o a distance function to
regularize, which further illustrates the following theorems
and remarks.

Theorem 4. The convergence speed of ‖x(t)
i − h

(t)
j ‖2 follows:∫ ‖x(t)

i −h
(t)
j ‖

2

‖x(0)
i −h

(0)
j ‖2

d
(
‖xi − hj‖2

)
‖xi − hj‖2

[
σ(−x>i hj) + 2βλdis

] ∼ − ∫ η(t)

η(0)
dη.

(31)

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 10,2022 at 04:27:13 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3148284, IEEE
Transactions on Knowledge and Data Engineering

10

Proof. A single updating step. First, we give the updating
step given by regularized NCE-based embedding (recall the
updating step given by vanilla NCE as Eq. 7). Combining
the gradients of vanilla NCE (Eq. 6) and the gradients of the
distance functions (Eq. 30), we can derive the embedding
x
(t+1)
i and h

(t+1)
j at time t + 1 as following (we use · to

denote embeddings updated by regularized NCE):

x
(t+1)
i ← x

(t+1)
i + ηβλdis(h

(t)
j − x

(t)
i)

= x
(t)
i + ησ

(
− x

(t)>
i h

(t)
j

)
h
(t)
j + ηβλdis(h

(t)
j − x

(t)
i),

h
(t+1)
j ← h

(t+1)
j + ηβλdis(x

(t)
i − h

(t)
j)

= h
(t)
j + ησ

(
− x

(t)>
i h

(t)
j

)
x
(t)
i + ηβλdis(x

(t)
i − h

(t)
j).

(32)

Writing Eq. 32 in a differential form, we can derive:

dxi =
[
σ(−x>i hj)hj + βλdis(hj − xi)

]
dη,

dhj =
[
σ(−x>i hj)xi + βλdis(xi − hj)

]
dη,

based on which we can derive:

d(‖xi − hj‖2) = 2(x>i − h>j)(dxi − dhj)

= −2‖xi − hj‖2
[
σ(−x>i hj) + 2βλdis

]
dη.

One can obtain Eq. 31 by integration with the constant
multiplier omitted. The proof ends.

Comments on Theorem 4 (why the convergence of
regularized NCE is faster than vanilla NCE). Since it is
not very obvious that Eq. 31 shows a faster convergence
speed than Eq. 11 (Property 4, Theorem 1) which indicates
the convergence speed of ‖xi − hj‖2 by vanilla NCE, here
we give some detailed explanations. Comparing Eq. 31
with Eq. 11, we can find that the main difference lies on
the denominators where the term σ(−x>i hj) in Eq. 11 is
substituted with σ(−x>i hj) + 2βλdis in Eq. 31. By Property
1 in Theorem 1, we know that after enough updating steps
x>i hj will be quite large and σ(−x>i hj) is close to zero.
Approximately, we have σ(−x>i hj) ≈ exp(−x>i hj), so we
have σ(−x>i hj)+2βλdis

σ(−x>i hj)
≈ 1 + 2 exp(x>i hj)βλdis. So, regular-

ized NCE converges about 1+2 exp(x>i hj)βλdis times faster
than vanilla NCE. Since β is a constant and λdis depends on
the distance function and ‖xi−hj‖2, how much regularized
NCE is faster is different for the distance functions. For
Wasserstein-2 distance where λdis is a constant (recall Fig. 5
here), it can be exponentially faster, and for Wasserstein-1
and Gaussian/Laplacian distance, it can be even faster. For
Wasserstein-3 distance where λdis decreases as the training
procedure goes on, it is easy to prove that the convergence
of regularized NCE is still much faster than vanilla NCE.

Beside Theorem 4 which theoretically shows the faster
convergence speed of regularized NCE, we also derive
Remark 1. It indicates that the regularized distance term
won’t affect the final solutions for positive samples. Because
the proof of Remark 1 is very similar with the proof of
properties in Theorem 1, we omit the proof here.

Remark 1. For regularized NCE-based embedding, Property 1,
3, 5 in Theorem 1 still hold.

In a further step, by the following Theorem 5, we give
the constraints of β, under which the distance functions
will give positive effects on the convergence of NCE-based
models in each iteration with the same learning rate.

Theorem 5. (A necessary and sufficient condition for faster
convergence for both NCE-h/x) Suppose that at time t a
positive node pair (i, j) is sampled, whose embeddings are x

(t)
i

and h
(t)
i . Given a distance function Ozdis(·, ·), the corresponding

λdis is defined by Eq. 30. To distinguish the embeddings by
regularized NCE from the embeddings by vanilla NCE, we denote
the embeddings updated by regularized NCE as x̃(t+1)

i and h̃
(t+1)
j

at time t + 1, and the embeddings updated by vanilla NCE as
x
(t+1)
i and h

(t+1)
i . Then with learning rate η, then:

β <
1

ηλdis
+

1

λdis
σ
(
−x(t)>

i h
(t)
j

)
⇔x̃

(t+1)>
i h̃

(t+1)
j > x

(t+1)>
i h

(t+1)
j ,

(33)

where the second line indicates a faster speed of convergence.

Proof. By performing vector inner-product for embedding at
time t+ 1 according to Eq.32, we have:

x̃
(t+1)>
i h̃

(t+1)
j = x

(t+1)>
i h

(t+1)
j

+ ηβλdis
(
1− ηβλdis + ησ

(
− x

(t)>
i h

(t)
j

))
‖h(t)

j − x
(t)
i ‖

2.

It is apparent that Eq. 33 holds. The proof ends.

4.2.2 Improved First-order Proximity Preservation
The improvement of the gradient for first-order preservation
is in two folds. First, compared with the vanilla NCE which
does not preserve first-order proximity directly, the term
of distance functions used in regularized NCE explicitly
preserve the proximity. Specifically, the objective in Eq. 28
ensures that the expectation of distance between two nodes
in a positive node pair is limited. It is somehow appar-
ent to find that once the expectation of defined distance
EOzdis(i, j) is determined, the expectation of Euclidean dis-
tance E‖xi−hj‖ is also decided. Hence the preservation of
the first-order proximity is guaranteed. We can assume:

E‖xi − hj‖ = C1, (34)

where C1 is a constant. Second, regularized NCE relieves
the problem brought by gradient vanishing. According to
the updating rules given by regularized NCE (Eq. 32), we
can find that when the gradients from NCE loss are close to
vanishing, i.e. σ(x>i hj) → 1, the whole gradients will not
be lost when λdis > 0. It indicates the embedding still goes
more similar for connected nodes.

4.2.3 Improved Second-order Proximity Preservation
As mentioned in Sec. 3.1, the embedding based on vanilla
NCE needs no less than d neighbors to guarantee the
second-order proximity preservation. In comparison, an ad-
ditional distance function guarantees a limited expectation
of the Euclidean distance between the node embedding of
two nodes who have only one common neighbor. Supposing
that two nodes i1 and i2 have a common neighbor j, by
triangle inequality we have:

‖xi1 − xi2‖ ≤ ‖xi1 − hj‖+ ‖xi2 − hj‖.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 10,2022 at 04:27:13 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3148284, IEEE
Transactions on Knowledge and Data Engineering

11

Then according to Eq. 34, the second-order proximity preser-
vation can be guaranteed by:

E‖xi1 − xi2‖ ≤ 2C1. (35)

4.2.4 Nonlinearize the Embedding Distribution of NCE-h

By adding a distance function, the mentioned linear distri-
bution of embedding by NCE-h in Sec. 3.3 can no longer be
found in the embedding by regularized NCE-h. We clarify
that by the following Remark 2. The property indicates that
regularized NCE-h may be better at preserving the non-
linearity of networks compared with vanilla NCE-h.

Remark 2. With the same assumption of Theorem 3, given a
node i1, one cannot find such a node i2 whose embedding xi2 is
almost parallel with xi1 through event A1 and A2 in Theorem 3
by regularized NCE.

Proof. For NCE-h, we set ∂L1/∂hj = 0, then we have:

N∑
i=1

(
wijσ(−y∗ij)−KPn(j)douti σ(y∗ij)

)
x∗i

=β
N∑
i=1

wijλdis(x
∗
i − h∗j).

Then we follow the proof of Theorem 3, by event A1 and
event A2, and we have:

douti1 σ(y∗i1j1)x
∗
i1 − d

out
i2 σ(y∗i2j2)x

∗
i2

=
n−1∑
k=1

doutrk

(
σ(y∗rkj2)− σ(y

∗
rkj1

)
)
x∗rk

+
β

KPn(j1)

N∑
i=1

wij1λdis(h
∗
j1 − x∗i)

− β

KPn(j2)

N∑
i=1

wij2λdis(h
∗
j2 − x∗i).

by which we can see that embedding x∗i2 and x∗i1 is not
‘almost parallel’ (defined in Theorem 3).

4.2.5 Improvement on Label Smoothing

As discussed in Sec. 4.2.2 and Sec. 4.2.3, the added distance
term will result in the limited Euclidean distance between
the node embedding and hidden embedding of connected
nodes. Here we will show the necessity to have a limited
Euclidean distance between the embedding of nodes that
shares any-order proximity, especially for node classifica-
tion. Suppose there is a ground-truth label mapping func-
tionM : Rd → Rc which maps node embedding to a label
vector which has c classes. When M is differentiable and
L-Lipschitz, for any two nodes ii and i2 we have:

‖M(xi1)−M(xi2)‖ ≤ L‖xi1 − xi2‖.

That means, if the embedding distance of two nodes is
small, their predicted labels by M will also be similar.
Through the first-/second-order proximity preservation as
guaranteed by Eq. 34 and Eq. 35, label smoothing between
nodes sharing proximity is reached.

Algorithm 1: NCE based learning for network em-
bedding via ASGD. As a general framework, it
incorporates different forms of distance function
and neighbor expansion (see Table 1).

1 Input: vanilla NCE mode z = {h, x}, embedding
dimension d, number of negative samples (for each
positive sample): K, weight β, network G, learning
rate η;
1: for all positive sample (i, j) do

2: xerr ← −η
∂
(
Oz

nce(i,j)+βO
z
D(i,j)

)
∂x

(t)
i

;

3: h
(t+1)
j ← h

(t)
j − η

∂
(
Oz

nce(i,j)+βO
z
D(i,j)

)
∂h

(t)
j

; //OzD is

distance loss;
4: for n = 1, 2, . . . ,K do
5: Sample a negative node j′;
6: xerr ← xerr − η ∂O

z
nce(i,j

′)

∂x
(t)
i

;

7: h
(t+1)
j′ ← h

(t)
j′ − η

∂Oz
nce(i,j

′)

∂h
(t)

j′
;

8: end for
9: x

(t+1)
i ← x

(t)
i + xerr; //Update xi as a batch;

10: end for
11: return node embedding set {xi};

4.2.6 Further Discussion on Distance Functions

We review and summarize the features of the regularized
NCE embedding. We recommend readers to re-read Fig. 2
to see the improvement in different aspects of regularized
NCE-based embedding compared with the vanilla one. In
the sections before, we discussed about several properties of
regularized NCE embedding, including faster convergence
(Sec. 4.2.1), improved ability to preserve first-order proxim-
ity (Sec. 4.2.2) and second-order proximity (Sec. 4.2.3), better
capability in expressing non-linear structures (Sec. 4.2.4),
and improvement on label smoothing (Sec. 4.2.5).

The discussed properties are shared commonly by all
listed distance functions in this paper but not limited to
them. All the distance function whose gradient has the form
of Eq. 30 will obtain the privileges. However, we strongly
recommend users to use Wasserstein-3 distance in practice.
The reasons are in two folds:

• The Stability of Training. From Fig. 5, we can
see that Wasserstein-3 distance is the only function
where the coefficient λdis decreases as the training
procedure goes on. A lot of mature optimization
skills such as SGD will decay the learning rate for
stable training. And the decay of λdis also takes
a similar effect during training. In comparison, the
λdis of Wasserstein-1 and Laplacian kernel will be
very large when the distance ‖xi − hj‖2 close to
zero (convergence), which might result in a huge
updating step thus ruining the training procedure.

• The Stability of Faster Convergence. Note that we
give a necessary and sufficient condition for faster
convergence in Theorem 5, which indicates that only
with λdis < 1/βη + σ(−x(t)

i h
(t)
j)/β will the model

converge faster. However, we can clearly see that

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 10,2022 at 04:27:13 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3148284, IEEE
Transactions on Knowledge and Data Engineering

12

Fig. 7: (a) Barbell graph example. (b)-(e) its embedding by LINE-1st/2nd and LINE-1st/2nd with Wasserstein-3 distance
(β = 0.03). The cross in each sub-figure stands for x = 0 (y ∈ [−1, 1]) and y = 0 (x ∈ [−1, 1]). The added functions show
advantage in preserving structure and nodes’ 1st/2nd-order proximity.

TABLE 4: Comparison of distance functions. ‘Stability’ in-
cludes the stability of training and stability of a faster
convergence speed.

Dist. Func. Stability Neighbor Preference
Wasserstein-1 × nodes with (possibly) higher proximity
Wasserstein-2 X treat neighbors equally

Wasserstein-3∗ X nodes with (possibly) lower proximity
Laplacian × nodes with (possibly) higher proximity
Gaussian X nodes with (possibly) higher proximity

∗: experimentally the best on different tasks.

Wassertein-1 distance and Laplacian kernel do not
always satisfy the condition.

From Fig. 5 we can see that some of the distance func-
tions (Laplacian/Gaussian kernels, Wasserstein-1 distance)
lay more weights on the node pairs (i, j) whose Euclidean
distance ‖xi−hj‖ is smaller, which means that the functions
prefer node pairs with a possibly higher proximity. While
for others, we can see that Wasserstein-2 does not have
such a preference and Wasserstein-3 prefers node pairs with
a possibly lower proximity. We summarize these analyzed
features as the pros and cons of the functions in Table 4.

4.3 Optimization
The objective Eq. 29 is optimized by asynchronous stochastic
gradient decent (ASGD) [30]. We denote node embedding
xi at time t as x

(t)
i and hidden embedding hj as h

(t)
j .

Each thread updates NCE-based embedding within a com-
mon framework as detailed in Alg. 1. Because we have
N � (K + 1), which means the node number is much
greater than batch size of each thread, there are few conflicts
between threads. Hence vanilla ASGD is enough in our case
and we leave the research on exploring advanced ASGD for
network embedding as future work.

5 VISUALIZATION AND DISCUSSION

We do visualization over both simulated graphs and real-
world networks, to illustrate the improvement of regular-
ized NCE according to the proposed theorems.

5.1 Visualization on Barbell Graph
In this sucsection, we visualize the embedding on Barbell
graph in line with [13]. Barbell graph consists of two com-
plete graphs of the same node number connected by a path.

Fig. 7(a) gives an example of barbell graph. The barbell
graph has some special properties: 1) It has a symmetric
structure; 2) It has both a dense part (the complete graph)
and a sparse part (the path). 3) Second-order proximity in
a barbell graph is varying. According to the summarized
three properties, good embedding of a barbell graph should
meet the following requirements: 1) the embedding should
also has a symmetric distribution; 2) from the view of first-
order preservation, the dense part in a graph should be
dense in embedding space, and so do the sparse part. 3) to
show second-order proximity, nodes with a higher second-
order proximity should be closer in the embedding space
compared to those share a low second-order proximity.
We visualize the example barbell graph’s (Fig. 7(a)) 2D
embedding in Fig. 7(b)-(e). Specifically, we discuss about the
embedding results in Fig. 7 as follows.

5.1.1 Performance of LINE-2nd

Both LINE-2nd and its distance enhanced version can pre-
serve symmetric structure in embedding space. According
to Fig. 7(b), LINE-2nd can embed node # 0-3 (the dense part)
close and node # 4-6 (the sparse part) relatively distantly so
it does well in first-order proximity preserving, so for elastic
LINE-2nd in Fig. 7(c). In second-order proximity preserving,
we can see significant improvement shown in Fig. 7(c).
Node # 0 and 1 share the highest second-order proximity,
node # 1 and 4 the second, and node # 4 and 5 do not
share second-order proximity. Elastic LINE-2nd achieves the
results with node # 0-3 the closest, node # 4 and node # 0-3
the second, and node # 4, 5 the furthest.

5.1.2 Performance of LINE-1st

Fig. 7(d) and Fig. 7(e) show that LINE-1st enhanced by
Wasserstein-2 distance can preserve the symmetric struc-
ture effectively compared with LINE-1st without a distance
function. Moreover, LINE-1st is designed for first-order
proximity modeling according to [11], but Fig. 7(d) gives
surprising results opposite to its design goal. In Fig. 7(d),
node # 6 and 7 should be close just like node # 4 and node
0-3, but as the figure shows, node # 6 is very far from node #
5 as well as node # 7-10. With a distance function, first-order
proximity can be naturally preserved as shown in Fig. 7(d).
Interestingly, second-order proximity is also well preserved
by making node # 0-3 closest, node # 4 and 0-3 the second,
and node # 4, 5 the furthest.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 10,2022 at 04:27:13 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3148284, IEEE
Transactions on Knowledge and Data Engineering

13

TABLE 5: Network statistics for the tasks of network recon-
struction and node classification.

Dataset YT-C BC PPI GR-QC DBLP

|V| 22,579 10,312 3,890 5,242 12,591
|E| 95,506 333,983 76,584 14,496 49,627
#Labels 47 39 50 - -
Avg. Deg. 8.46 64.78 39.37 5.53 7.88

5.2 Visualization on Real-world Networks
Apart from Barbell graph, we also do visualization for 2-D
embedding over a real-world network, YouTube-Cut, whose
detailed information is given in Table 5 and Sec. 6.1.1.

In Fig. 8, we plot two nodes’ hidden embeddings and
the node embeddings of their neighbors with different
markers. For LINE-2nd, the distance term: i) reduce the
distance between node embedding and hidden embedding
for connected nodes (first-order proximity preservation); ii)
reduce the distance between node embeddings who have
a common neighbor (second-order proximity preservation);
iii) break the linearity and devide the two parts from the
same area. The observed improvement is all in accord with
our theoretical analysis in Sec. 3.2, Sec. 3.3, and Sec. 4.2.
For LINE-1st, although the improvement brought by the
distance function is not that significant, we will show the
improvement by the experimental results in Sec. 6.

In Fig. 9, we plot the node embeddings for three classes
of nodes. For LINE-2nd, with distance term the three classes
are divided more separately and more non-linear structures
are preserved. For LINE-1st, the role of distance functions is
not as conspicuous as that in LINE-2nd.

Comparing the normalized embeddings and the unor-
malized embeddings in Fig. 8 and Fig. 9, we can also see
that normalization over embeddings may help to reorganize
the whole embedding layout while with little substantial
improvement. That is to say, the contribution from distance
functions and that from normalization are orthogonal and
can be adopted simultaneously.

6 EXPERIMENTS

We evaluate state-of-the-art embedding methods and espe-
cially including those NCE-based ones enhanced with our
proposed distance modeling module, on the tasks of node
classification and network reconstruction. All the experi-
ments run on a single desktop with 128G memory, 4 physical
CPU each with 12 cores (Intel(R) Xeon(R) CPU E5-2678 v3
@ 2.50GHz). The default number of threads is 8.

6.1 Protocols
6.1.1 Datasets
Experiments are conducted on several real-world bench-
marks, whose statistics are given in Table 5.

YouTube-Cut [31] (YT-C): a social network where users
can add others to the friend list and join interest groups
as treated as user labels. It is a large scale network with
millions of nodes being very sparse. In line with the protocol
in [3], to make it a smaller network that can be handled
by the relatively high complexity model, we remove the
unlabeled nodes from raw YouTube.

BlogCatalog [32] (BC): a social network whose blog is
organized by specific categories, which are the labels of
a blogger, and bloggers have social connections with each
other.

PPI [33]: a subgraph of the PPI network for Homo
Sapiens. Node labels represent biological states.

Arxiv GR-QC2 [34]: a collaboration network from arXiv
and covers scientific collaborations between authors with
papers submitted to General Relativity and Quantum Cos-
mology category.

DBLP3 [35]: a citation network of DBLP. Each node
denotes a publication, and each edge represents a citation.

6.1.2 Compared methods
For all methods, we set embedding space’s dimension 128.
For NCE-based methods, we set 5 negative samples for each
sampled positive node pair. Distance weight β used in node
classification is given in Table 6. For network reconstruction,
we give general information that β falls in [0.01, 0.1]. We set
γ = 1 which is only used in Laplacian/Gaussian kernel
functions.

DeepWalk4 [10] combines random walks and the skip-
gram language model for embedding. In the implementa-
tion, it adopts hierarchical softmax to model node embed-
ding and hidden embedding. We set window size 10, walk
length 80 and number of walks for each node 40.

LINE5 [11] models first-order (by NCE-x model, Eq. 3)
and second-order proximity (by NCE-h model, Eq. 2) on
the adjacency matrix, trains them separately with edge
sampling, and concatenates the representations after nor-
malization on node embedding. It can be regarded as 1-hop
random walk with both NCE-h and NCE-x. Its full version
and two variants, LINE-1st and LINE-2nd, are studied. The
number of samples is set as 3× 108.

node2vec6 [12] uses biased random walk to explore
both breadth-first and depth-first structure, and train node
embedding and hidden embedding by negative sampling
(i.e. NCE-h model, Eq. 2). We set p = 1 and q = 1 in the
experiments, and the other parameters for random walks
are the same with DeepWalk. Under our settings, node2vec
can be regarded as multi-hop uniform random walks with
NCE-h model.

AROPE7 [5] models arbitrary-order proximity based on
SVD framework. The experiments in [5] show that the third-
order proximity yields the best results in most tasks, so we
utilize the third-order embedding as the node embedding.
We set the weight of different order [1, 0.1, 0.01].

VERSE8 [14] uses node similarity explicitly by Person-
alized PageRank (PPR), Adajcency Similarity, and SimRank,
and learns node embedding by NCE-x. We use the default
version with PPR similarity, damping factor α = 0.85. We
run 105 epochs for each node.

RNS9 [24] proposes a normalization penalty over node
embeddings. The number of samples is 3× 108.

2. http://snap.stanford.edu/data/ca-GrQc.html
3. http://konect.uni-koblenz.de/networks/dblp-cite
4. https://github.com/xgfs/deepwalk-c
5. https://github.com/tangjianpku/LINE
6. https://github.com/xgfs/node2vec-c
7. https://github.com/ZW-ZHANG/AROPE.git
8. https://github.com/xgfs/verse
9. https://github.com/ShawXh/RNCE/blob/main/rns.cpp

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 10,2022 at 04:27:13 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3148284, IEEE
Transactions on Knowledge and Data Engineering

14

2.5 0.0 2.5 5.0 7.5 10.0 12.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

12.5

2.0 1.5 1.0 0.5 0.0 0.5 1.0

1.5

1.0

0.5

0.0

0.5

1.0 1.00

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75
0.6

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.00

1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) LINE-2nd

(e) LINE-1st
1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

(f) LINE-1st + W-3
1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

(b) LINE-2nd + W-3 (c) LINE-2nd (normalized) (d) LINE-2nd + W-3 (normalized)

(h) LINE-1st + W-3 (normalized)

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

(g) LINE-1st (normalized)
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Fig. 8: Results of 2-D embedding by four categories of objectives on YouTube-Cut: (a) LINE-2nd, (b) LINE-2nd w/
Wasserstein-3 distance, (e) LINE-1st, and (f) LINE-1st w/ Wasserstein-3 distance. Fig. (c)(d)(g)(h) are normalized em-
bedding results. The marker ‘×’ denotes hidden embedding of the two nodes while the marker ‘o’ denotes the embedding
of their neighbors. The straight lines denote the hyperplane of x where x>yj = 0 with yj being the hidden embedding.

3 2 1 0 1
10

5

0

5

10

1.5

1.0

0.5

0.0

0.5

1.0 0.8 0.6 0.4 0.2 0.0 0.2

0.25

0.00

0.25

0.50

0.75

1.00

1.0 0.8 0.6 0.4 0.2 0.0 0.2

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

(a) LINE-2nd (d) LINE-2nd + W-3 (normalized)
1.00

(c) LINE-2nd (normalized)

(e) LINE-1st

0.75

0.50

0.25

0.00

0.25

0.50

0.75

0.50

0.75

1.00

2.00 1.75 1.50 1.25 1.00 0.75 0.50 0.25 0.00

(f) LINE-1st + W-3
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(g) LINE-1st (normalized) (h) LINE-1st + W-3 (normalized)
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

(b) LINE-2nd + W-3

Fig. 9: Results of 2-D embedding on YouTube-Cut. Different colors denote different classes. Note that the embedding results
of LINE-2nd are improved by Wasserstein-3 distance, as the nodes of different classes are separated more clearly.

ProNE10 [6] initializes embedding by sparse matrix fac-
torization, and then enhances the embedding via spectral
propagation. We run Python version in the repository with
the default setting, i.e. the term number of the Chebyshev
expansion k = 10, θ = 0.5, and µ = 0.2. We use the
enhanced embedding [6] as the node embedding result.

10. https://github.com/THUDM/ProNE.git

STRAP [26] makes use of the backward push algorithm
to efficiently compute the sparse Personalized PageRank
(PPR) as its transpose proximity. The experimental results
are quoted from [26].

6.2 Experiments on Node Classification
As a standard task to evaluate network embedding, multi-
label classification assumes each node has one or more

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 10,2022 at 04:27:13 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3148284, IEEE
Transactions on Knowledge and Data Engineering

15

TABLE 6: Node classification on BlogCatalog with different distances. The result of STRAP is quoted from [26]. Underlined
denotes those outperforming all the nine baselines in the first nine rows (‘no-NCE’ stands for the methods not based
on NCE, ‘none’ stands for the NCE-based methods without distance functions). Bold dempets those outperform other
methods with the same setting of distance.

di
st

.

Methods Macro-F1 (%) Micro-F1 (%)
β Time (s) Avg

10% 30% 50% 70% 90% 10% 30% 50% 70% 90% Gain (%)

no
-N

C
E DeepWalk 20.94 24.72 26.35 26.83 27.25 35.37 38.74 40.29 40.69 40.74 - 111.3 -

AROPE 13.14 13.90 13.74 14.09 14.18 26.17 29.43 30.08 30.99 31.48 - 28.8 -
ProNE 19.7 21.82 22.55 22.98 22.87 37.24 39.33 39.96 40.16 40.33 - 14.4 -

STRAP* - - - - - 36.42 40.29 41.59 42.68 42.55 - - -

N
on

e

LINE-2nd 15.03 20.09 21.89 22.84 22.80 26.54 32.79 35.87 36.42 36.80 - 69.2 -
LINE-1st 17.83 19.62 19.77 19.94 19.63 34.12 36.87 37.19 37.46 37.40 - 69.7 -

LINE 17.95 21.70 23.13 24.28 24.19 35.74 38.72 39.55 40.14 40.31 - 136.1 -
node2vec 20.41 25.12 27.31 28.17 28.78 35.23 38.91 40.42 41.18 41.96 - 70.2 -

VERSE 20.35 25.22 27.33 28.37 28.32 33.88 38.33 40.00 40.81 41.33 - 231.8 -

R
N

S LINE-2nd 15.33 20.39 22.20 23.05 23.42 27.10 33.55 35.94 36.98 37.71 - 116.06 +0.45
LINE-1st 18.61 21.21 22.16 22.42 21.74 34.05 37.73 38.85 39.17 38.94 - 114.92 +1.51

LINE 18.47 22.42 23.87 24.83 24.72 36.01 39.24 40.40 40.77 40.76 - 185.48 +0.58

W
as

se
rs

te
in

-1 LINE-2nd 13.31 17.16 19.08 20.28 21.48 32.74 36.29 37.39 37.96 38.64 0.05 84.0 +0.32
LINE-1st 19.77 22.18 23.04 23.39 23.26 36.06 38.97 39.71 40.12 40.21 0.05 85.4 +2.67

LINE 18.91 23.02 24.48 25.51 25.42 36.54 39.48 40.38 40.99 40.73 0.05 165.5 +0.98
node2vec 20.72 25.49 27.38 28.10 28.06 35.54 39.11 40.35 41.07 41.33 0.01 67.7 +0.58

VERSE 20.16 24.69 26.91 27.74 28.72 33.81 38.08 39.92 40.77 41.33 0.01 271.1 -0.18

El
as

ti
c

(W
-2

) LINE-2nd 18.26 23.28 25.18 26.38 26.26 37.54 40.93 42.05 42.54 42.41 0.1 83.5 +5.37
LINE-1st 21.55 23.58 24.08 24.41 24.60 38.75 40.66 41.19 41.32 41.42 0.1 83.4 +4.17

LINE 21.36 25.04 26.09 26.84 26.90 38.85 41.48 42.16 42.60 42.52 0.1 160.0 +2.81
node2vec 22.00 25.85 27.55 28.32 28.81 38.06 39.71 41.37 41.75 41.96 0.015 70.8 +1.09

VERSE 21.85 25.90 27.60 28.87 29.26 34.86 39.09 40.78 41.69 42.20 0.02 263.0 +0.82

W
as

se
rs

te
in

-3 LINE-2nd 18.37 23.51 25.33 26.31 26.18 37.65 41.07 42.13 42.55 42.35 0.01 83.4 +5.43
LINE-1st 23.25 25.25 25.90 26.16 25.94 39.59 41.65 42.10 42.31 42.35 0.02 86.2 +5.47

LINE 21.73 25.59 27.07 28.16 28.36 39.05 41.64 42.68 43.10 43.25 0.01/0.02 144.9 +3.49
node2vec 22.00 25.85 27.36 28.49 28.26 38.61 41.03 41.82 42.37 42.31 0.002 66.7 +1.36

VERSE 21.50 25.91 27.52 28.42 28.71 35.97 39.38 40.75 41.30 41.56 0.01 292.9 +0.71

La
pl

ac
ia

n LINE-2nd 14.05 18.26 20.27 21.75 22.37 33.66 37.31 38.39 39.12 39.60 0.8 78.8 +1.37
LINE-1st 18.55 20.71 21.26 21.63 21.56 34.99 37.64 38.34 38.73 38.84 0.1 81.8 +1.24

LINE 18.41 22.44 23.93 25.01 25.14 36.03 39.07 39.98 40.48 40.64 0.8/0.1 158.5 +0.54
node2vec 20.58 25.35 27.15 27.90 28.47 35.51 39.07 40.53 41.07 41.55 0.005 68.2 +0.27

VERSE 20.16 25.29 27.10 28.15 28.69 33.62 38.24 40.02 40.89 41.50 0.01 266.5 -0.03

G
au

ss
ia

n LINE-2nd 18.04 23.16 25.01 25.93 26.19 37.39 40.86 41.93 42.22 42.36 0.7 77.8 +5.20
LINE-1st 19.18 21.69 22.59 22.90 22.73 35.57 38.54 39.41 39.74 39.76 0.1 78.8 +2.23

LINE 20.16 24.35 25.83 26.74 27.03 37.63 40.58 41.47 41.83 41.86 0.7/0.1 150.0 +2.18
node2vec 20.56 25.29 27.22 27.95 27.58 35.38 38.95 40.33 41.07 41.37 0.02 68.5 +0.12

VERSE 20.44 25.69 27.23 28.14 28.13 34.30 38.64 40.08 40.93 41.18 0.05 266.0 +0.08

TABLE 7: Node classification Macro-F1 (%) on YouTube-Cut.

dist. Methods 1% 3% 5% 7% 9% β

no
-N

C
E DeepWalk 30.25 33.9 35.28 36.41 37.02 -

ProNE 31.02 35.46 38.05 39.08 39.60 -
AROPE 29.18 32.90 33.80 34.77 34.95 -

N
on

e

LINE 29.58 34.18 36.24 37.93 38.90 -
node2vec 23.96 32.73 35.32 36.96 38.03 -

VERSE 29.81 34.45 36.11 37.21 38.10 -
RNS-LINE 28.54 34.54 36.98 38.91 39.93 -

W
-3

LINE 32.23 37.15 39.26 40.71 41.41 0.05
node2vec 32.34 37.33 39.02 40.19 40.96 .005

VERSE 31.35 36.22 37.77 38.80 39.42 0.05

TABLE 8: Node classification Macro-F1 (%) on PPI.

dist. Methods 10% 30% 50% 70% 90% β

no
-N

C
E DeepWalk 13.07 16.60 18.01 19.30 20.10 -

AROPE 10.84 13.62 14.35 15.53 15.39 -
ProNE 14.12 17.89 18.77 19.30 19.80 -

N
on

e

LINE 12.84 16.15 17.71 18.74 18.83 -
node2vec 12.18 16.52 17.99 19.05 19.32 -

VERSE 12.45 16.18 17.87 18.88 19.80 -
RNS-LINE 12.50 16.66 18.46 19.72 20.10 -

W
-3

LINE 14.25 18.67 20.02 21.30 20.98 0.05
node2vec 14.15 18.30 19.76 20.78 20.65 .005

VERSE 13.51 17.44 18.90 19.76 19.78 0.05

0 10 20 30
iterations (x106)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

sc
or

e

Macro-F1

0 10 20 30
iterations (x106)

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Micro-F1

LINE-2nd+Wasserstein-3
LINE-1st
LINE-1st+Wasserstein-3

LINE

LINE+Wasserstein-3

LINE-2nd

Fig. 10: Performance of LINE and the version enhanced by
Wasserstein-3 learning in the first 30 million iterations on
PPI with 10% portion of training data.

labels for prediction. After node embedding is learned,
LIBLINEAR [36] is adopted to train the one-vs-rest Logistic
regression classifiers. Macro-F1 and Micro-F1 serve as the
metric for evaluation. We randomly sample a portion of the
labeled nodes, whose representations are set as training data
and the rest nodes’ representation for testing. Specifically,
we randomly sample 10% to 90% portion of nodes on
BlogCatalog and PPI, and 1% to 9% on YouTube-Cut. For

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 10,2022 at 04:27:13 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3148284, IEEE
Transactions on Knowledge and Data Engineering

16

50000

25000

0
Sc

or
e

Vanilla
+ Wasserstein-3

0 5 10 15 20 25 30
Iterations (x106)

0

Sc
or

e
LINE-2nd

LINE-1st

20000

(a) Positive node pairs

500000

600000

700000

Sc
or

e Vanilla
+ Wasserstein-3

0 5 10 15 20 25 30
Iterations (x106)

382000

384000

386000

Sc
or

e

LINE-2nd

LINE-1st

(b) Negative node pairs

Fig. 11: The cosine similarity score convergence curve
(the higher the better). For positive node pairs, score =∑N
i,j=1 wij cos〈xihj〉. For negative node pairs, the score is

estimated by score =
∑N
i=1

∑K
k=1Ej′∼Pn(1 − cos〈xihj′〉).

From the curve, we can find that with distance function,
both LINE-1st/2nd for both positive/negative node pairs
converged at a higher score. It indicates that distance func-
tions help the vanilla NCE loss do a better job on distin-
guishing positive samples from negative ones.

each method, we repeat the procedure for 10 trials and their
average are reported.

On BlogCatalog, Table 6 reports the full results for all the
baselines as well as NCE-based models with all the men-
tioned distance functions. On YouTube-Cut (Table 7) and
PPI (Table 8) we report only those of NCE-based methods
with Wasserstein-3, which yield best performance among all
the distance functions. The other distance functions behave
similarly on the two datasets compared to on BlogCatalog.
In Table 6, all of NCE-based methods are improved by the
adoption of distance functions. Among them, Wasserstein-
3 is the most brilliant. With Wasserstein-3, even LINE-
1st which only utilizes direct neighbors (see Table 1) out-
performs about half of the baselines. The overwhelming
performance of Wasserstein-3 version is also consistent with
our speculation in Sec. 4.2.6.

We also evaluate LINE with Wasserstein-3 on PPI. The
learning curve of the first 30 million iterations is shown
in Fig. 10. The results indicate that: 1) In the earlier stage,
distance function accelerates their convergence; 2) In the
middle, distance function helps break the bottleneck of
convergence by improving the behavior of gradient descent;
3) In the later stage, distance function keeps fine-tuning to
finally reach better performance.

6.3 Experiments on Network Reconstruction

Network reconstruction can be used to measure how well
a embedding model preserves nodes’ origin local structure.
The performance relies heavily on the choice of the recon-
struction score functions [3], [5], [14]. In line with [3], we
reconstruct the network according to the Euclidean distance
between node embedding and leave hidden embedding un-
used, which is exactly required by first-order proximity [37].
We calculate Euclidean distance between all possible node
pairs, namely N(N − 1) directed node pairs. Then we sort
the distances and select a number of node pairs equal to the
number of edges in the given network as reconstructions.
Finally, precision is calculated with the edges in the raw
network as ground-truth.

NCE-based methods are improved significantly with the
adoption of the distance functions, suggesting their effec-
tiveness in structure preservation. Similar to the case in
node classification, Wasserstein-3 achieves the largest gain
compared with other distance functions. Among the NCE-
based methods, VERSE basically performs best on this task
perhaps due to advanced PPR neighbor modeling. We also
make some interesting observations: As a superior version
of LINE-2nd by biased random-walk based neighbor exten-
sion, node2vec consistently outperforms LINE-2nd. VERSE
also mostly outperforms its basis, LINE-1st. It indicates that
not only a proper distance function is useful, but also the
expansion of neighborhood plays an irreplaceable roles. In
fact, the latter has been well studied and showcased in
literature (see Table 1).

6.4 Further Discussion
We discuss further on the proposed regularized NCE.

6.4.1 Convergence Analysis
We plot the convergence curve of cosine similarity between
postive pairs and negative pairs in Fig. 11. We see that
under the same parameter settings, regularized NCE will
converge at a higher point for both positive samples and
negative samples, which means that compared with vanilla
NCE, regularized NCE does better at distinguishing postive
samples from negative samples.

6.4.2 Time Complexity
For NCE-based embedding methods, distance functions
only incur a linear time cost without additional space over-
head, which means both total time complexity and space
complexity are not affected by distance functions, as verified
by the running time of compared methods in Table 6.

6.4.3 Parameter Sensitivity
We also evaluate the effect of distance weight β with embed-
ding dimension d = 128 on the PPI dataset. Fig. 12 depicts
how node classification and network reconstruction behave
with varying β. The results show that both LINE-1st/2nd
yield best results with Wasserstein-3 on both tasks, while
Wasserstein-2 can achieve comparable results with different
β. The best β is about 0.03 for Wasserstein-3 and around
0.1 for Wasserstein-2, which actually is able to yield good
results for most networks. The results also indicate that a too
large β may lead to the result that high-order neighbors are
embedded too close in the embedding space thus affecting
the performance, which is in accordance with Theorem 5.

7 CONCLUSION

We have provided a Noise Contrastive Estimation perspec-
tive on skip-gram based network embedding methods, and
identify two basic components used in the objectives.

Starting from these two components, we have explored
various forms of the score function which is in contrast to
existing methods focusing on the modeling of neighbor-
hoods. In particular, the elastic potential energy form bears
a clear physical meaning to mitigate the issues in gradient
descent based updating procedure by our in-depth analysis.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 10,2022 at 04:27:13 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3148284, IEEE
Transactions on Knowledge and Data Engineering

17

Fig. 12: Performance of LINE-1st/2nd in addition with different distance functions with varying β, denoted by x-axis.

TABLE 9: Network reconstruction precision (%) with aver-
age gain (%) on different datasets.

dist. Methods GR-QC BC DBLP PPI Gain

N
on

e

LINE-2nd 39.73 <0.01 0.02 0.07 -
LINE-1st 60.61 2.50 15.70 5.24 -

DeepWalk 59.53 8.46 25.95 26.96 -
LINE 53.73 6.22 3.10 14.46 -

node2vec 60.61 8.59 23.15 42.10 -
AROPE 14.05 <0.01 1.20 0.09 -
VERSE 59.95 21.32 22.94 39.34 -
ProNE 49.93 3.50 0.93 24.01 -

R
N

S LINE-2nd 48.88 0.72 8.96 0.96 +4.93
LINE-1st 60.46 1.95 15.30 12.4 +1.52

LINE 53.11 4.19 3.30 16.94 +0.01

W
as

se
rs

te
in

-1 LINE-2nd 51.74 <0.01 1.90 19.00 +8.21
LINE-1st 60.03 7.06 17.75 36.12 +9.23

LINE 56.60 5.11 2.68 15.92 +0.70
node2vec 63.49 7.97 25.05 44.44 +1.63

VERSE 66.16 22.74 24.34 44.44 +3.53

El
as

ti
c

(W
-2

) LINE-2nd 60.11 3.40 2.80 22.35 +12.21
LINE-1st 61.60 13.42 20.59 46.13 +14.42

LINE 59.28 5.18 6.33 23.84 +4.28
node2vec 64.44 6.40 24.47 49.07 +2.48

VERSE 62.40 29.56 25.10 45.89 +4.85

W
as

se
rs

te
in

-3 LINE-2nd 59.77 5.71 5.36 29.44 +15.12
LINE-1st 63.08 25.62 22.67 52.40 +19.93

LINE 59.42 7.40 9.68 28.43 +6.86
node2vec 63.49 10.00 24.56 50.23 +3.46

VERSE 61.88 26.17 25.66 46.70 +4.22

La
pl

ac
ia

n LINE-2nd 56.07 <0.01 0.05 0.60 +4.23
LINE-1st 59.45 2.60 15.63 11.35 +1.25

LINE 54.06 5.18 2.25 15.67 -0.09
node2vec 60.79 8.36 22.50 44.74 +0.49

VERSE 66.87 23.11 30.10 41.98 +4.63

G
au

ss
ia

n LINE-2nd 54.53 <0.01 2.73 13.53 +7.74
LINE-1st 60.64 3.32 14.82 20.15 +3.72

LINE 57.41 4.73 3.34 16.30 +1.07
node2vec 63.29 8.65 25.16 45.25 +1.98

VERSE 72.91 26.07 29.78 44.30 +7.38

Extensive experimental results demonstrate the state-of-the-
art performance achieved by our proposed techniques.

For future work, we aim to explore other more direct and
efficient asynchronous gradient updating mechanisms.

ACKNOWLEDGMENT

This research was supported by National Key Research
and Development Program of China (2020AAA0107600),
and Open Research Projects of Zhejiang Lab (NO.

2021KB0AB04). The authors are thankful to the reviewers’
valuable comments to improve the paper.

REFERENCES

[1] P. Cui, X. Wang, J. Pei, and W. Zhu, “A survey on network
embedding,” IEEE Transactions on Knowledge and Data Engineering,
2018.

[2] P. Goyal and E. Ferrara, “Graph embedding techniques, applica-
tions, and performance: A survey,” Knowledge-Based Systems, vol.
151, pp. 78–94, 2018.

[3] D. Wang, P. Cui, and W. Zhu, “Structural deep network em-
bedding,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2016, pp.
1225–1234.

[4] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, “Asymmetric tran-
sitivity preserving graph embedding,” in Proceedings of the 22nd
ACM SIGKDD international conference on Knowledge discovery and
data mining, 2016, pp. 1105–1114.

[5] Z. Zhang, P. Cui, X. Wang, J. Pei, X. Yao, and W. Zhu, “Arbitrary-
order proximity preserved network embedding,” in Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2018, pp. 2778–2786.

[6] J. Zhang, Y. Dong, Y. Wang, J. Tang, and M. Ding, “Prone:
Fast and scalable network representation learning,” in Proceedings
of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI-19. International Joint Conferences on Artificial
Intelligence Organization, 7 2019, pp. 4278–4284. [Online].
Available: https://doi.org/10.24963/ijcai.2019/594

[7] J. Qiu, Y. Dong, H. Ma, J. Li, C. Wang, K. Wang, and J. Tang,
“Netsmf: Large-scale network embedding as sparse matrix fac-
torization,” in The World Wide Web Conference. ACM, 2019, pp.
1509–1520.

[8] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in neural information process-
ing systems, 2017, pp. 1024–1034.

[9] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò,
and Y. Bengio, “Graph Attention Networks,” International
Conference on Learning Representations, 2018. [Online]. Available:
https://openreview.net/forum?id=rJXMpikCZ

[10] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2014, pp. 701–710.

[11] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line:
Large-scale information network embedding,” in Proceedings of the
24th International Conference on World Wide Web. International
World Wide Web Conferences Steering Committee, 2015, pp. 1067–
1077.

[12] A. Grover and J. Leskovec, “node2vec: Scalable feature learning
for networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2016, pp.
855–864.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 10,2022 at 04:27:13 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.24963/ijcai.2019/594
https://openreview.net/forum?id=rJXMpikCZ

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3148284, IEEE
Transactions on Knowledge and Data Engineering

18

[13] L. F. Ribeiro, P. H. Saverese, and D. R. Figueiredo, “struc2vec:
Learning node representations from structural identity,” in Pro-
ceedings of the 23rd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining. ACM, 2017, pp. 385–394.

[14] A. Tsitsulin, D. Mottin, P. Karras, and E. Müller, “Verse: Versatile
graph embeddings from similarity measures,” in Proceedings of the
2018 World Wide Web Conference. International World Wide Web
Conferences Steering Committee, 2018, pp. 539–548.

[15] X. Du, J. Yan, R. Zhang, and H. Zha, “Cross-network skip-gram
embedding for joint network alignment and link prediction,” IEEE
Transactions on Knowledge and Data Engineering, 2020.

[16] H. Xiong and J. Yan, “Btwalk: Branching tree random walk for
multi-order structured network embedding,” IEEE Transactions on
Knowledge and Data Engineering, 2020.

[17] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their com-
positionality,” in Advances in neural information processing systems,
2013, pp. 3111–3119.

[18] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation
of word representations in vector space,” Computer Science, 2013.

[19] M. Gutmann and A. Hyvärinen, “Noise-contrastive estimation:
A new estimation principle for unnormalized statistical models,”
in Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, 2010, pp. 297–304.

[20] T. Jian, Q. Meng, and Q. Mei, “Pte: Predictive text embedding
through large-scale heterogeneous text networks,” in Acm Sigkdd
International Conference on Knowledge Discovery & Data Mining,
2015.

[21] S. Cao, W. Lu, and Q. Xu, “Grarep: Learning graph representations
with global structural information,” in Proceedings of the 24th ACM
international on conference on information and knowledge management.
ACM, 2015, pp. 891–900.

[22] D. Luo, C. Ding, F. Nie, and H. Huang, “Cauchy graph embed-
ding.” 01 2011, pp. 553–560.

[23] A. Mnih and Y. W. Teh, “A fast and simple algorithm for training
neural probabilistic language models,” in Proceedings of the 29th In-
ternational Coference on International Conference on Machine Learning,
2012, pp. 419–426.

[24] M. Armandpour, P. Ding, J. Huang, and X. Hu, “Robust negative
sampling for network embedding,” Proceedings of the AAAI Confer-
ence on Artificial Intelligence, vol. 33, pp. 3191–3198, 07 2019.

[25] J. Qiu, Y. Dong, H. Ma, J. Li, K. Wang, and J. Tang, “Network
embedding as matrix factorization: Unifying deepwalk, line, pte,
and node2vec,” in Proceedings of the Eleventh ACM International
Conference on Web Search and Data Mining. ACM, 2018, pp. 459–
467.

[26] Y. Yin and Z. Wei, “Scalable graph embeddings via sparse
transpose proximities,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
ser. KDD ’19. New York, NY, USA: Association for Computing
Machinery, 2019, p. 1429–1437. [Online]. Available: https:
//doi.org/10.1145/3292500.3330860

[27] O. Levy and Y. Goldberg, “Neural word embedding as implicit
matrix factorization,” Advances in neural information processing sys-
tems, vol. 27, pp. 2177–2185, 2014.

[28] P. Erdős and A. Rényi, “On random graphs i,” Publicationes Math-
ematicae, vol. 4, pp. 3286–3291, 1959.

[29] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative
adversarial networks,” in International Conference on Machine Learn-
ing, 2017, pp. 214–223.

[30] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild: A lock-free
approach to parallelizing stochastic gradient descent,” in Advances
in neural information processing systems, 2011, pp. 693–701.

[31] L. Tang and H. Liu, “Scalable learning of collective behavior
based on sparse social dimensions,” in Proceedings of the 18th ACM
conference on Information and knowledge management. ACM, 2009,
pp. 1107–1116.

[32] ——, “Relational learning via latent social dimensions,” in Proceed-
ings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2009, pp. 817–826.

[33] B.-J. Breitkreutz, C. Stark, T. Reguly, L. Boucher, A. Breitkreutz,
M. Livstone, R. Oughtred, D. H. Lackner, J. Bähler, V. Wood
et al., “The biogrid interaction database: 2008 update,” Nucleic acids
research, vol. 36, no. suppl 1, pp. D637–D640, 2007.

[34] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evolution: Den-
sification and shrinking diameters,” ACM transactions on Knowl-
edge Discovery from Data (TKDD), vol. 1, no. 1, pp. 2–es, 2007.

[35] M. Ley, “The DBLP computer science bibliography: Evolution,
research issues, perspectives,” in Proc. Int. Symposium on String
Processing and Information Retrieval, 2002, pp. 1–10.

[36] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,
“Liblinear: A library for large linear classification,” Journal of
machine learning research, vol. 9, no. Aug, pp. 1871–1874, 2008.

[37] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral
techniques for embedding and clustering,” in Advances in neural
information processing systems, 2002, pp. 585–591.

Hao Xiong is currently a PhD candidate with De-
partment of Computer Science and Engineering,
Shanghai Jiao Tong University, under the super-
vision of Junchi Yan and Xuemin Lin by a joint
PhD program between SJTU and University of
New South Wales. Before that, he received the
B.E. degree in Cyber Science and Engineering
(with honor) from the same university in 2019.
He was a research intern in Amazon AI Labs,
Shanghai from 2019 to 2020, working on the
open-source graph platform DGL. His research

interests include machine learning, data mining, and network analysis.

Junchi Yan (S’10-M’11-SM’21) is currently an
Associate Professor with Department of Com-
puter Science and Engineering, Shanghai Jiao
Tong University. Before that, he was a Senior
Research Staff Member and Principal Scientist
with IBM Research – China where he started his
career in April 2011. He obtained the Ph.D. in
Electrical Engineering, from Shanghai Jiao Tong
University, China in 2015. His research inter-
ests are machine learning and computer vision.
He serves as Area Chair for ACM-MM 2021/22,

CVPR 2021, AAAI 2022, ICML 2022. He is a Senior Member of IEEE.

Zengfeng Huang is currently an Associate Pro-
fessor in the School of Data Science, Fudan
University. Before that he was a Research Fellow
in CSE, UNSW and a Postdoc in MADALGO,
Aarhus University. He obtained his PhD at Hong
Kong University of Science and Technology in
CSE and B.S. degree in Computer Science from
Zhejiang University in 2008. His research inter-
ests are algorithmic aspects of data science. His
single author paper has been nominated as the
outstanding paper in ICML 2018.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 10,2022 at 04:27:13 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1145/3292500.3330860
https://doi.org/10.1145/3292500.3330860

